59 research outputs found

    HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion.

    Get PDF
    The cancer stem cell hypothesis proposes that cancers arise in stem/progenitor cells through disregulation of self-renewal pathways generating tumors, which are driven by a component of 'tumor-initiating cells' retaining stem cell properties. The HER2 gene is amplified in 20-30% of human breast cancers and has been implicated in mammary tumorigenesis as well as in mediating aggressive tumor growth and metastasis. We demonstrate that HER2 overexpression drives mammary carcinogenesis, tumor growth and invasion through its effects on normal and malignant mammary stem cells. HER2 overexpression in normal mammary epithelial cells (NMEC) increases the proportion of stem/progenitor cells as demonstrated by in vitro mammosphere assays and the expression of stem cell marker aldehyde dehydrogenase (ALDH) as well as by generation of hyperplastic lesions in humanized fat pads of NOD (nucleotide-binding oligomerization domain)/SCID (severe combined immunodeficient) mice. Overexpression of HER2 in a series of breast carcinoma cell lines increases the ALDH-expressing 'cancer stem cell' population which displays increased expression of stem cell regulatory genes, increased invasion in vitro and increased tumorigenesis in NOD/SCID mice. The effects of HER2 overexpression on breast cancer stem cells are blocked by trastuzumab in sensitive, but not resistant, cell lines, an effect mediated by the PI3-kinase/Akt pathway. These studies provide support for the cancer stem cell hypothesis by suggesting that the effects of HER2 amplification on carcinogenesis, tumorigenesis and invasion may be due to its effects on normal and malignant mammary stem/progenitor cells. Furthermore, the clinical efficacy of trastuzumab may relate to its ability to target the cancer stem cell population in HER2-amplified tumors

    RB acute loss induces centrosome amplification and aneuploidy in murine primary fibroblasts

    Get PDF
    BACKGROUND: Incorrect segregation of whole chromosomes or parts of chromosome leads to aneuploidy commonly observed in cancer. The correct centrosome duplication, assuring assembly of a bipolar mitotic spindle, is essential for chromosome segregation fidelity and preventing aneuploidy. Alteration of p53 and pRb functions by expression of HPV16-E6 and E7 oncoproteins has been associated with centrosome amplification. However, these last findings could be the result of targeting cellular proteins in addition to pRb by HPV16-E7 oncoprotein. To get a more detailed picture on the role of pRb in chromosomal instability and centrosome amplification, we analyzed the effects of the acute loss of retinoblastoma gene function in primary conditional Rb deficient mouse embryonic fibroblasts (MEFs). Moreover, since pRb is a transcriptional repressor, microarray analysis was done on pRb-competent and pRb-deficient MEFs to evaluate changes in expression of genes for centrosome homeostasis and for correct mitosis. RESULTS: Acute loss of pRb induces centrosome amplification and aneuploidy in the vast majority of cells analyzed. A time course analysis shows a decrease of cells with amplified centrosomes after 40 days from the adenoviral infection. At this time only 12% of cells still show amplified centrosomes. Interestingly, cells with pRb constitutive loss show a similar percentage of cells with amplified centrosomes. DNA-Chip analyses in MEFs wt (mock infected) and pRb depleted (Ad-Cre infected) cells reveal differential expression of genes controlling both centrosome duplication and mitotic progression. CONCLUSION: Our findings suggest a direct link between pRb status, centrosome amplification and chromosomal instability, and define specific mitotic genes as targets whose gene expression has to be altered to achieve or maintain aneuploidy

    RNAi mediated acute depletion of Retinoblastoma protein (pRb) promotes aneuploidy in human primary cells via micronuclei formation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Changes in chromosome number or structure as well as supernumerary centrosomes and multipolar mitoses are commonly observed in human tumors. Thus, centrosome amplification and mitotic checkpoint dysfunctions are believed possible causes of chromosomal instability. The Retinoblastoma tumor suppressor (<it>RB</it>) participates in the regulation of synchrony between DNA synthesis and centrosome duplication and it is involved in transcription regulation of some mitotic genes. Primary human fibroblasts were transfected transiently with short interfering RNA (siRNA) specific for human pRb to investigate the effects of pRb acute loss on chromosomal stability.</p> <p>Results</p> <p>Acutely pRb-depleted fibroblasts showed altered expression of genes necessary for cell cycle progression, centrosome homeostasis, kinetochore and mitotic checkpoint proteins. Despite altered expression of genes involved in the Spindle Assembly Checkpoint (SAC) the checkpoint seemed to function properly in pRb-depleted fibroblasts. In particular <it>AURORA-A </it>and <it>PLK1 </it>overexpression suggested that these two genes might have a role in the observed genomic instability. However, when they were post-transcriptionally silenced in pRb-depleted fibroblasts we did not observe reduction in the number of aneuploid cells. This finding suggests that overexpression of these two genes did not contribute to genomic instability triggered by <it>RB </it>acute loss although it affected cell proliferation. Acutely pRb-depleted human fibroblasts showed the presence of micronuclei containing whole chromosomes besides the presence of supernumerary centrosomes and aneuploidy.</p> <p>Conclusion</p> <p>Here we show for the first time that <it>RB </it>acute loss triggers centrosome amplification and aneuploidy in human primary fibroblasts. Altogether, our results suggest that pRb-depleted primary human fibroblasts possess an intact spindle checkpoint and that micronuclei, likely caused by mis-attached kinetochores that in turn trigger chromosome segregation errors, are responsible for aneuploidy in primary human fibroblasts where pRb is acutely depleted.</p

    Erythropoietin activates cell survival pathways in breast cancer stem-like cells to protect them from chemotherapy

    Get PDF
    Recombinant erythropoietin (EPO) analogs [erythropoiesis-stimulating agents (ESA)] are clinically used to treat anemia in patients with cancer receiving chemotherapy. After clinical trials reporting increased adverse events and/or reduced survival in ESA-treated patients, concerns have been raised about the potential role of ESAs in promoting tumor progression, possibly through tumor cell stimulation. However, evidence is lacking on the ability of EPO to directly affect cancer stem-like cells, which are thought to be responsible for tumor progression and relapse. We found that breast cancer stem-like cells (BCSC) isolated from patient tumors express the EPO receptor and respond to EPO treatment with increased proliferation and self-renewal. Importantly, EPO stimulation increased BCSC resistance to chemotherapeutic agents and activated cellular pathways responsible for survival and drug resistance. Specifically, the Akt and ERK pathways were activated in BCSC at early time points following EPO treatment, whereas Bcl-xL levels increased at later times. In vivo, EPO administration counteracted the effects of chemotherapeutic agents on BCSC-derived orthotopic tumor xenografts and promoted metastatic progression both in the presence and in the absence of chemotherapy treatment. Altogether, these results indicate that EPO acts directly on BCSC by activating specific survival pathways, resulting in BCSC protection from chemotherapy and enhanced tumor progression. © 2013 American Association for Cancer Research

    CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis

    Get PDF
    Cancer stem cells drive tumor formation and metastasis, but how they acquire metastatic traits is not well understood. Here, we show that all colorectal cancer stem cells (CR-CSCs) express CD44v6, which is required for their migration and generation of metastatic tumors. CD44v6 expression is low in primary tumors but demarcated clonogenic CR-CSC populations. Cytokines hepatocyte growth factor (HGF), osteopontin (OPN), and stromal-derived factor 1α (SDF-1), secreted from tumor associated cells, increase CD44v6 expression in CR-CSCs by activating the Wnt/β-catenin pathway, which promotes migration and metastasis. CD44v6- progenitor cells do not give rise to metastatic lesions but, when treated with cytokines, acquire CD44v6 expression and metastatic capacity. Importantly, phosphatidylinositol 3-kinase (PI3K) inhibition selectively killed CD44v6 CR-CSCs and reduced metastatic growth. In patient cohorts, low levels of CD44v6 predict increased probability of survival. Thus, the metastatic process in colorectal cancer is initiated by CSCs through the expression of CD44v6, which is both a functional biomarker and therapeutic target. © 2014 Elsevier Inc

    Colon Cancer Stem Cells Dictate Tumor Growth and Resist Cell Death by Production of Interleukin-4

    Get PDF
    A novel paradigm in tumor biology suggests that cancer growth is driven by stem-like cells within a tumor. Here, we describe the identification and characterization of such cells from colon carcinomas using the stem cell marker CD133 that accounts around 2% of the cells in human colon cancer. The CD133+ cells grow in vitro as undifferentiated tumor spheroids, and they are both necessary and sufficient to initiate tumor growth in immunodeficient mice. Xenografts resemble the original human tumor maintaining the rare subpopulation of tumorigenic CD133+ cells. Further analysis revealed that the CD133+ cells produce and utilize IL-4 to protect themselves from apoptosis. Consistently, treatment with IL-4Rα antagonist or anti-IL-4 neutralizing antibody strongly enhances the antitumor efficacy of standard chemotherapeutic drugs through selective sensitization of CD133+ cells. Our data suggest that colon tumor growth is dictated by stem-like cells that are treatment resistant due to the autocrine production of IL-4

    Disease-Modifying Therapies and Coronavirus Disease 2019 Severity in Multiple Sclerosis

    Get PDF
    Objective: This study was undertaken to assess the impact of immunosuppressive and immunomodulatory therapies on the severity of coronavirus disease 2019 (COVID-19) in people with multiple sclerosis (PwMS). Methods: We retrospectively collected data of PwMS with suspected or confirmed COVID-19. All the patients had complete follow-up to death or recovery. Severe COVID-19 was defined by a 3-level variable: mild disease not requiring hospitalization versus pneumonia or hospitalization versus intensive care unit (ICU) admission or death. We evaluated baseline characteristics and MS therapies associated with severe COVID-19 by multivariate and propensity score (PS)-weighted ordinal logistic models. Sensitivity analyses were run to confirm the results. Results: Of 844 PwMS with suspected (n = 565) or confirmed (n = 279) COVID-19, 13 (1.54%) died; 11 of them were in a progressive MS phase, and 8 were without any therapy. Thirty-eight (4.5%) were admitted to an ICU; 99 (11.7%) had radiologically documented pneumonia; 96 (11.4%) were hospitalized. After adjusting for region, age, sex, progressive MS course, Expanded Disability Status Scale, disease duration, body mass index, comorbidities, and recent methylprednisolone use, therapy with an anti-CD20 agent (ocrelizumab or rituximab) was significantly associated (odds ratio [OR] = 2.37, 95% confidence interval [CI] = 1.18-4.74, p = 0.015) with increased risk of severe COVID-19. Recent use (&lt;1 month) of methylprednisolone was also associated with a worse outcome (OR = 5.24, 95% CI = 2.20-12.53, p = 0.001). Results were confirmed by the PS-weighted analysis and by all the sensitivity analyses. Interpretation: This study showed an acceptable level of safety of therapies with a broad array of mechanisms of action. However, some specific elements of risk emerged. These will need to be considered while the COVID-19 pandemic persists

    COVID-19 Severity in Multiple Sclerosis: Putting Data Into Context

    Get PDF
    Background and objectives: It is unclear how multiple sclerosis (MS) affects the severity of COVID-19. The aim of this study is to compare COVID-19-related outcomes collected in an Italian cohort of patients with MS with the outcomes expected in the age- and sex-matched Italian population. Methods: Hospitalization, intensive care unit (ICU) admission, and death after COVID-19 diagnosis of 1,362 patients with MS were compared with the age- and sex-matched Italian population in a retrospective observational case-cohort study with population-based control. The observed vs the expected events were compared in the whole MS cohort and in different subgroups (higher risk: Expanded Disability Status Scale [EDSS] score &gt; 3 or at least 1 comorbidity, lower risk: EDSS score ≤ 3 and no comorbidities) by the χ2 test, and the risk excess was quantified by risk ratios (RRs). Results: The risk of severe events was about twice the risk in the age- and sex-matched Italian population: RR = 2.12 for hospitalization (p &lt; 0.001), RR = 2.19 for ICU admission (p &lt; 0.001), and RR = 2.43 for death (p &lt; 0.001). The excess of risk was confined to the higher-risk group (n = 553). In lower-risk patients (n = 809), the rate of events was close to that of the Italian age- and sex-matched population (RR = 1.12 for hospitalization, RR = 1.52 for ICU admission, and RR = 1.19 for death). In the lower-risk group, an increased hospitalization risk was detected in patients on anti-CD20 (RR = 3.03, p = 0.005), whereas a decrease was detected in patients on interferon (0 observed vs 4 expected events, p = 0.04). Discussion: Overall, the MS cohort had a risk of severe events that is twice the risk than the age- and sex-matched Italian population. This excess of risk is mainly explained by the EDSS score and comorbidities, whereas a residual increase of hospitalization risk was observed in patients on anti-CD20 therapies and a decrease in people on interferon

    SARS-CoV-2 serology after COVID-19 in multiple sclerosis: An international cohort study

    Get PDF

    DMTs and Covid-19 severity in MS: a pooled analysis from Italy and France

    Get PDF
    We evaluated the effect of DMTs on Covid-19 severity in patients with MS, with a pooled-analysis of two large cohorts from Italy and France. The association of baseline characteristics and DMTs with Covid-19 severity was assessed by multivariate ordinal-logistic models and pooled by a fixed-effect meta-analysis. 1066 patients with MS from Italy and 721 from France were included. In the multivariate model, anti-CD20 therapies were significantly associated (OR&nbsp;=&nbsp;2.05, 95%CI&nbsp;=&nbsp;1.39–3.02, p&nbsp;&lt;&nbsp;0.001) with Covid-19 severity, whereas interferon indicated a decreased risk (OR&nbsp;=&nbsp;0.42, 95%CI&nbsp;=&nbsp;0.18–0.99, p&nbsp;=&nbsp;0.047). This pooled-analysis confirms an increased risk of severe Covid-19 in patients on anti-CD20 therapies and supports the protective role of interferon
    • …
    corecore