25 research outputs found

    Quality assurance for measurements of the radioactivity in the area of the "Horia Hulubei" National Institute for Physics and Nuclear Engineering, IFIN-HH

    Get PDF
    Published in: Proceedings of the 14th Joint International IMEKO TC1 + TC7 + TC 13 Symposium : "Intelligent quality measurements - theory, education and training" ; in conjunction with the 56th IWK, Ilmenau University of Technology and the 11th SpectroNet Collaboration Forum ; 31. August - 2. September 2011, JenTower Jena, Germany. - Ilmenau : Univ.-Bibliothek, ilmedia, 2011. URN: urn:nbn:de:gbv:ilm1-2011imeko:

    Multi-parametric MR Imaging Biomarkers Associated to Clinical Outcomes in Gliomas: A Systematic Review

    Full text link
    [EN] Purpose: To systematically review evidence regarding the association of multi-parametric biomarkers with clinical outcomes and their capacity to explain relevant subcompartments of gliomas. Materials and Methods: Scopus database was searched for original journal papers from January 1st, 2007 to February 20th , 2017 according to PRISMA. Four hundred forty-nine abstracts of papers were reviewed and scored independently by two out of six authors. Based on those papers we analyzed associations between biomarkers, subcompartments within the tumor lesion, and clinical outcomes. From all the articles analyzed, the twenty-seven papers with the highest scores were highlighted to represent the evidence about MR imaging biomarkers associated with clinical outcomes. Similarly, eighteen studies defining subcompartments within the tumor region were also highlighted to represent the evidence of MR imaging biomarkers. Their reports were critically appraised according to the QUADAS-2 criteria. Results: It has been demonstrated that multi-parametric biomarkers are prepared for surrogating diagnosis, grading, segmentation, overall survival, progression-free survival, recurrence, molecular profiling and response to treatment in gliomas. Quantifications and radiomics features obtained from morphological exams (T1, T2, FLAIR, T1c), PWI (including DSC and DCE), diffusion (DWI, DTI) and chemical shift imaging (CSI) are the preferred MR biomarkers associated to clinical outcomes. Subcompartments relative to the peritumoral region, invasion, infiltration, proliferation, mass effect and pseudo flush, relapse compartments, gross tumor volumes, and high-risk regions have been defined to characterize the heterogeneity. For the majority of pairwise cooccurrences, we found no evidence to assert that observed co-occurrences were significantly different from their expected co-occurrences (Binomial test with False Discovery Rate correction, alpha=0.05). The co-occurrence among terms in the studied papers was found to be driven by their individual prevalence and trends in the literature. Conclusion: Combinations of MR imaging biomarkers from morphological, PWI, DWI and CSI exams have demonstrated their capability to predict clinical outcomes in different management moments of gliomas. Whereas morphologic-derived compartments have been mostly studied during the last ten years, new multi-parametric MRI approaches have also been proposed to discover specific subcompartments of the tumors. MR biomarkers from those subcompartments show the local behavior within the heterogeneous tumor and may quantify the prognosis and response to treatment of gliomas.This work was supported by the Spanish Ministry for Investigation, Development and Innovation project with identification number DPI2016-80054-R.Oltra-Sastre, M.; Fuster García, E.; Juan -Albarracín, J.; Sáez Silvestre, C.; Perez-Girbes, A.; Sanz-Requena, R.; Revert-Ventura, A.... (2019). Multi-parametric MR Imaging Biomarkers Associated to Clinical Outcomes in Gliomas: A Systematic Review. Current Medical Imaging Reviews. 15(10):933-947. https://doi.org/10.2174/1573405615666190109100503S9339471510Louis D.N.; Perry A.; Reifenberger G.; The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 2016,131(6),803-820Ostrom Q.T.; Gittleman H.; Fulop J.; CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008-2012. Neuro-oncol 2015,17(Suppl. 4),iv1-iv62Yachida S.; Jones S.; Bozic I.; Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 2010,467(7319),1114-1117Gerlinger M.; Rowan A.J.; Horswell S.; Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012,366(10),883-892Sottoriva A.; Spiteri I.; Piccirillo S.G.M.; Intratumor heterogeneityin human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci USA 2013,110(10),4009-4014Whiting P.F.; Rutjes A.W.; Westwood M.E.; QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011,155(8),529-536Stupp R.; Mason W.P.; van den Bent M.J.; Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005,352(10),987-996Ponte K.F.; Berro D.H.; Collet S.; In vivo relationship between hypoxia and angiogenesis in human glioblastoma: a multimodal imaging study. J Nucl Med 2017,58(10),1574-1579Pope W.B.; Kim H.J.; Huo J.; Recurrent glioblastoma multiforme: ADC histogram analysis predicts response to bevacizumab treatment. Radiology 2009,252(1),182-189Mörén L.; Bergenheim A.T.; Ghasimi S.; Brännström T.; Johansson M.; Antti H.; Metabolomic screening of tumor tissue and serum in glioma patients reveals diagnostic and prognostic information. Metabolites 2015,5(3),502-520Prager A.J.; Martinez N.; Beal K.; Omuro A.; Zhang Z.; Young R.J.; Diffusion and perfusion MRI to differentiate treatment-related changes including pseudoprogression from recurrent tumors in high-grade gliomas with histopathologic evidence. AJNR Am J Neuroradiol 2015,36(5),877-885Kickingereder P.; Burth S.; Wick A.; Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology 2016,280(3),880-889Yoo R-E.; Choi S.H.; Cho H.R.; Tumor blood flow from arterial spin labeling perfusion MRI: a key parameter in distinguishing high-grade gliomas from primary cerebral lymphomas, and in predicting genetic biomarkers in high-grade gliomas. J Magn Reson Imaging 2013,38(4),852-860Liberman G.; Louzoun Y.; Aizenstein O.; Automatic multi-modal MR tissue classification for the assessment of response to bevacizumab in patients with glioblastoma. Eur J Radiol 2013,82(2),e87-e94Ramadan S.; Andronesi O.C.; Stanwell P.; Lin A.P.; Sorensen A.G.; Mountford C.E.; Use of in vivo two-dimensional MR spectroscopy to compare the biochemistry of the human brain to that of glioblastoma. Radiology 2011,259(2),540-549Xintao H.; Wong K.K.; Young G.S.; Guo L.; Wong S.T.; Support vector machine multi-parametric MRI identification of pseudoprogression from tumor recurrence in patients with resected glioblastoma. J Magn Reson Imaging 2011,33(2),296Ingrisch M.; Schneider M.J.; Nörenberg D.; Radiomic Analysis reveals prognostic information in T1-weighted baseline magnetic resonance imaging in patients with glioblastoma. Invest Radiol 2017,52(6),360-366Ulyte A.; Katsaros V.K.; Liouta E.; Prognostic value of preoperative dynamic contrast-enhanced MRI perfusion parameters for high-grade glioma patients. Neuroradiology 2016,58(12),1197-1208O’Neill A.F.; Qin L.; Wen P.Y.; de Groot J.F.; Van den Abbeele A.D.; Yap J.T.; Demonstration of DCE-MRI as an early pharmacodynamic biomarker of response to VEGF Trap in glioblastoma. J Neurooncol 2016,130(3),495-503Kickingereder P.; Bonekamp D.; Nowosielski M.; Radiogenomics of glioblastoma: machine learning-based classification of molecular characteristics by using multiparametric and multiregional mr imaging features. Radiology 2016,281(3),907-918Roberto S-R.; Antonio R-V.; Luis M-B.; Angel A-B.; Gracián G-M.; Quantitative mr perfusion parameters related to survival time in high-grade gliomas. European Radiology 2013,23(12),3456-3465Jain R.; Poisson L.; Narang J.; Genomic mapping and survival prediction in glioblastoma: molecular subclassification strengthened by hemodynamic imaging biomarkers. Radiology 2013,267(1),212-220Fathi K.A.; Mohseni M.; Rezaei S.; Bakhshandehpour G.; Saligheh R.H.; Multi-parametric (ADC/PWI/T2-W) image fusion approach for accurate semi-automatic segmentation of tumorous regions in glioblastoma multiforme. MAGMA 2015,28(1),13-22Caulo M.; Panara V.; Tortora D.; Data-driven grading of brain gliomas: a multiparametric MR imaging study. Radiology 2014,272(2),494-503Alexiou G.A.; Zikou A.; Tsiouris S.; Comparison of diffusion tensor, dynamic susceptibility contrast MRI and (99m)Tc-Tetrofosmin brain SPECT for the detection of recurrent high-grade glioma. Magn Reson Imaging 2014,32(7),854-859Van Cauter S.; De Keyzer F.; Sima D.M.; Integrating diffusion kurtosis imaging, dynamic susceptibility-weighted contrast-enhanced MRI, and short echo time chemical shift imaging for grading gliomas. Neuro-oncol 2014,16(7),1010-1021Seeger A.; Braun C.; Skardelly M.; Comparison of three different MR perfusion techniques and MR spectroscopy for multiparametric assessment in distinguishing recurrent high-grade gliomas from stable disease. Acad Radiol 2013,20(12),1557-1565Chawalparit O.; Sangruchi T.; Witthiwej T.; Diagnostic performance of advanced mri in differentiating high-grade from low-grade gliomas in a setting of routine service. J Med Assoc Thai 2013,96(10),1365-1373Li Y.; Lupo J.M.; Parvataneni R.; Survival analysis in patients with newly diagnosed glioblastoma using pre- and postradiotherapy MR spectroscopic imaging. Neuro-oncol 2013,15(5),607-617Shankar J.J.S.; Woulfe J.; Silva V.D.; Nguyen T.B.; Evaluation of perfusion CT in grading and prognostication of high-grade gliomas at diagnosis: a pilot study. AJR Am J Roentgenol 2013,200(5)Zinn P.O.; Mahajan B.; Sathyan P.; Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLoS One 2011,6(10)Matsusue E.; Fink J.R.; Rockhill J.K.; Ogawa T.; Maravilla K.R.; Distinction between glioma progression and post-radiation change by combined physiologic MR imaging. Neuroradiology 2010,52(4),297-306Juan-Albarracín J.; Fuster-Garcia E.; Manjón J.V.; Automated glioblastoma segmentation based on a multiparametric structured unsupervised classification. PLoS One 2015,10(5)Itakura H.; Achrol A.S.; Mitchell L.A.; Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities. Sci Transl Med 2015,7(303)Ion-Margineanu A.; Van Cauter S.; Sima D.M.; Tumour relapse prediction using multiparametric MR data recorded during follow-up of GBM patients. BioMed Res Int 2015,2015Durst C.R.; Raghavan P.; Shaffrey M.E.; Multimodal MR imaging model to predict tumor infiltration in patients with gliomas. Neuroradiology 2014,56(2),107-115Yoon J.H.; Kim J.H.; Kang W.J.; Grading of cerebral glioma with multi-parametric MR Imaging and 18F-FDG-PET: concordance and accuracy. European Radiol 2014,24(2),380-389Demerath T.; Simon-Gabriel C.P.; Kellner E.; Mesoscopic imaging of glioblastomas: are diffusion, perfusion and spectroscopic measures influenced by the radiogenetic phenotype? Neuroradiol J 2017,30(1),36-47Qin L.; Li X.; Stroiney A.; Advanced MRI assessment to predict benefit of anti-programmed cell death 1 protein immunotherapy response in patients with recurrent glioblastoma. Neuroradiology 2017,59(2),135-145Boult J.K.R.; Borri M.; Jury A.; Investigating intracranial tumour growth patterns with multiparametric MRI incorporating Gd-DTPA and USPIO-enhanced imaging. NMR Biomed 2016,29(11),1608-1617Server A.; Kulle B.; Gadmar Ø.B.; Josefsen R.; Kumar T.; Nakstad P.H.; Measurements of diagnostic examination performance using quantitative apparent diffusion coefficient and proton MR spectroscopic imaging in the preoperative evaluation of tumor grade in cerebral gliomas. Eur J Radiol 2011,80(2),462-470Chang P.D.; Chow D.S.; Yang P.H.; Filippi C.G.; Lignelli A.; Predicting glioblastoma recurrence by early changes in the apparent diffusion coefficient value and signal intensity on FLAIR images. AJR Am J Roentgenol 2017,208(1),57-65Yi C.; Shangjie R.; Volume of high-risk intratumoralsubregions at multi-parametric MR imaging predicts overall survival and complements molecular analysis of glioblastoma. Eur Radiol 2017,27,3583-3592Khalifa J.; Tensaouti F.; Chaltiel L.; Identification of a candidate biomarker from perfusion MRI to anticipate glioblastoma progression after chemoradiation. Eur Radiol 2016,26(11),4194-4203Prateek P.; Jay P.; Partovi S.; Madabhushi A.; Tiwari P.; Radiomic features from the peritumoral brain parenchyma on treatment-naïve multi-parametric MR imaging predict long versus short-term survival in glioblastomamultiforme: preliminary findings. Eur Radiol 2017,27(10),4188-4197Lemasson B.; Chenevert T.L.; Lawrence T.S.; Impact of perfusion map analysis on early survival prediction accuracy in glioma patients. Transl Oncol 2013,6(6),766-774Inano R.; Oishi N.; Kunieda T.; Visualization of heterogeneity and regional grading of gliomas by multiple features using magnetic resonance-based clustered images. Sci Rep 2016,6,30344Delgado-Goñi T.; Ortega-Martorell S.; Ciezka M.; MRSI-based molecular imaging of therapy response to temozolomide in preclinical glioblastoma using source analysis. NMR Biomed 2016,29(6),732-743Cui Y.; Tha K.K.; Terasaka S.; Prognostic imaging biomarkers in glioblastoma: development and independent validation on the basis of multiregion and quantitative analysis of MR images. Radiology 2016,278(2),546-553Price S.J.; Young A.M.H.; Scotton W.J.; Multimodal MRI can identify perfusion and metabolic changes in the invasive margin of glioblastomas. J Magn Reson Imaging 2016,43(2),487-494Sauwen N.; Acou M.; Van Cauter S.; Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI. Neuroimage Clin 2016,12,753-764Jena A.; Taneja S.; Gambhir A.; Glioma recurrence versus radiation necrosis: single-session multiparametric approach using simultaneous O-(2-18F-Fluoroethyl)-L-Tyrosine PET/MRI. Clin Nucl Med 2016,41(5),e228-e236Kim H.S.; Goh M.J.; Kim N.; Choi C.G.; Kim S.J.; Kim J.H.; Which combination of MR imaging modalities is best for predicting recurrent glioblastoma? Study of diagnostic accuracy and reproducibility. Radiology 2014,273(3),831-843Christoforidis G.A.; Yang M.; Abduljalil A.; “Tumoral pseudoblush” identified within gliomas at high-spatial-resolution ultrahigh-field-strength gradient-echo MR imaging corresponds to microvascularity at stereotactic biopsy. Radiology 2012,264(1),210-217Wang S.; Kim S.; Chawla S.; Differentiation between glioblastomas, solitary brain metastases, and primary cerebral lymphomas using diffusion tensor and dynamic susceptibility contrast-enhanced MR imaging. AJNR Am J Neuroradiol 2011,32(3),507-514Hanahan D.; Weinberg R.A.; Hallmarks of cancer: the next generation. Cell 2011,144(5),646-674Macdonald D.R.; Cascino T.L.; Schold S.C.; Cairncross J.G.; Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 1990,8(7),1277-1280Wen P.Y.; Macdonald D.R.; Reardon D.A.; Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 2010,28(11),1963-1972Sorensen A.G.; Batchelor T.T.; Wen P.Y.; Zhang W-T.; Jain R.K.; Response criteria for glioma. Nat Clin Pract Oncol 2008,5(11),634-644Rosenkrantz A.B.; Friedman K.; Chandarana H.; Current status of hybrid PET/MRI in oncologic imaging. AJR Am J Roentgenol 2016,206(1),162-172Castiglioni I.; Gallivanone F.; Canevari C.; Hybrid PET/MRI for In vivo imaging of cancer: current clinical experiences and recent advances. Curr Med Imaging 2016,12,106Mainta I.C.; Perani D.; Delattre B.M.A.; FDG PET/MR imaging in major neurocognitive disorders. Curr Alzheimer Res 2017,14,186-197Marner L.; Henriksen O.M.; Lundemann M.; Larsen V.A.; Law I.; Clinical PET/MRI in neurooncology: opportunities and challenges from a single-institution perspective. Clin Transl Imaging 2017,5(2),135-149R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2015. Available from: https://www.R-project.org

    Machine Learning for Classifying Abnormal Brain Tissue Progression based on Multi-parametric Magnetic Resonance Data

    No full text
    In vivo Magnetic Resonance Imaging (MRI) represents one of the major breakthroughs in medicine and biomedical sciences. In recent years, conventional MRI techniques have been complemented by several advanced MR modalities that target not only the morphology of an imaged organ, but also its functional properties: for instance, MR spectroscopy/MR spectroscopic imaging reveal metabolic information, perfusion MRI reveals microvascularisation, diffusion MRI reveals tissue architecture, etc. In neuroradiology, conventional MRI has a rather poor specificity in the diagnosis,prognosis and therapy follow-up of brain tumours. Several advanced MRI techniques have shown their own potential in brain tumour applications.However, there is a strong need for integrated data processing methods that can take advantage of the strengths and complementarity of all the available advanced MR techniques, in order to make a real impact in routine clinical practice. This doctoral project will develop classification methods that can cope with multi-modal MR data (in particular, anatomic MRI, spectroscopy, diffusion and perfusion MRI), and apply them to the diagnosis and follow-up of brain tumour and multiple sclerosis. One of the main goals is to solve some of the standing problems in brain tumour applications, e.g., non-invasive tumour subtyping and grading, prediction of tumour infiltration, or tumour recurrence after treatment. To this end, several data processing steps need to be designed and optimized: computation of relevant features from the data, matching the image resolutions among the different modalities, multi-modal data fusion and classification. Multi-modal MR data from brain tumour patients will be available from UZ Leuven. The data comes from patients with untreated brain tumours (low and high grade glioma; metastases), as well as longitudinal follow-up of glioma patients focusing on a new treatment approachcalled dendritic cell therapy. Data from multiple sclerosis patients will be available through a collaboration with Universite Claude Bernard Lyon I.nrpages: 170status: publishe

    Apprentissage par machine pour classifier la progression anormale des tissus cérébraux en fonction de données de résonance magnétique multiparamétriques

    No full text
    Machine learning is a subdiscipline in the field of artificial intelligence, which focuses on algorithms capable of adapting their parameters based on a set of observed data, by optimizing an objective or cost function. Machine learning has been the subject of large interest in the biomedical community because it can improve sensitivity and/or specificity of detection and diagnosis of any disease, while increasing the objectivity of the decision-making process. With the late increase in volume and complexity of medical data being collected, there is a clear need for applying machine learning algorithms in multi-parametric analysis for new detection and diagnostic modalities. Biomedical imaging is becoming indispensable for healthcare, as multiple modalities, such as Magnetic Resonance Imaging (MRI), Computed Tomography, and Positron Emission Tomography, are being increasingly used in both research and clinical settings. The non-invasive standard for brain imaging is MRI, as it can provide structural and functional brain maps with high resolution, all within acceptable scanning times. However, with the increase of MRI data volume and complexity, it is becoming more time consuming and difficult for clinicians to integrate all data and make accurate decisions. The aim of this thesis is to develop machine learning methods for automated preprocessing and diagnosis of abnormal brain tissues, in particular for the followup of glioblastoma multiforme (GBM) and multiple sclerosis (MS). Current conventional MRI (cMRI) techniques are very useful in detecting the main features of brain tumours and MS lesions, such as size and location, but are insufficient in specifying the grade or evolution of the disease. Therefore, the acquisition of advanced MRI, such as perfusion weighted imaging (PWI), diffusion kurtosis imaging (DKI), and magnetic resonance spectroscopic imaging (MRSI), is necessary to provide complementary information such as blood flow, tissue organisation, and metabolism, induced by pathological changes. In the GBM experiments our aim is to discriminate and predict the evolution of patients treated with standard radiochemotherapy and immunotherapy based on conventional and advanced MRI data. In the MS experiments our aim is to discriminate between healthy subjects and MS patients, as well as between different MS forms, based only on clinical and MRSI data. As a first experiment in GBM follow-up, only advanced MRI parameters were explored on a relatively small subset of patients. Average PWI parameters computed on manually delineated regions of interest (ROI) were found to be perfect biomarkers for predicting GBM evolution one month prior to the clinicians. In a second experiment in GBM follow-up of a larger subset of patients, MRSI was replaced by cMRI, while PWI and DKI parameter quantification was automated. Feature extraction was done on semi-manual tumour delineations, thereby reducing the time put by the clinician for manual delineating the contrast enhancing (CE) ROI. Learning a modified boosting algorithm on features extracted from semi-manual ROIs was shown to provide very high accuracy results for GBM diagnosis. In a third experiment in GBM follow-up of an extended subset of patients, a modified version of parametric response maps (PRM) was proposed to take into account the most likely infiltration area of the tumour, reducing even further the time a clinician would have to put for manual delineating the tumour, because all subsequent MRI scans were registered to the first one. Two types of computing PRM were compared, one based on cMRI and one based on PWI, as features extracted with these two modalities were the best in discriminating the GBM evolution, according to results from the previous two experiments. Results obtained within this last GBM analysis showed that using PRM based on cMRI is clearly superior to using PRM based on PWI [etc…]«Machine Learning» est un champ d'étude de l'intelligence artificielle qui se concentre sur des algorithmes capables d'adapter leur paramètres en se basant sur les données observées par l'optimisation d'une fonction objective ou d'une fonction de cout. Cette discipline a soulevé l'intérêt de la communauté de la recherche biomédicale puisqu'elle permet d'améliorer la sensibilité et la spécificité de la détection et du diagnostic de nombreuses pathologies tout en augmentant l'objectivité dans le processus de prise de décision thérapeutique. L'imagerie biomédicale est devenue indispensable en médecine, puisque plusieurs modalités comme l'imagerie par résonance magnétique (IRM), la tomodensitométrie et la tomographie par émission de positron sont de plus en plus utilisées en recherche et en clinique. L'IRM est la technique d'imagerie non-invasive de référence pour l'étude du cerveau humain puisqu'elle permet dans un temps d'acquisition raisonnable d'obtenir à la fois des cartographies structurelles et fonctionnelles avec une résolution spatiale élevée. Cependant, avec l'augmentation du volume et de la complexité des données IRM, il devient de plus en plus long et difficile pour le clinicien d'intégrer toutes les données afin de prendre des décisions précises. Le but de cette thèse est de développer des méthodes de « machine learning » automatisées pour la détection de tissu cérébral anormal, en particulier dans le cas de suivi de glioblastome multiforme (GBM) et de sclérose en plaques (SEP). Les techniques d'IRM conventionnelles (IRMc) actuelles sont très utiles pour détecter les principales caractéristiques des tumeurs cérébrales et les lésions de SEP, telles que leur localisation et leur taille, mais ne sont pas suffisantes pour spécifier le grade ou prédire l'évolution de la maladie. Ainsi, les techniques d'IRM avancées, telles que l'imagerie de perfusion (PWI), de diffusion (DKI) et la spectroscopie par résonance magnétique (SRM), sont nécessaires pour apporter des informations complémentaires sur les variations du flux sanguin, de l'organisation tissulaire et du métabolisme induits par la maladie. Dans une première étude de suivi de patients GBM, seuls les paramètres d'IRM avancés ont été explorés dans un relativement petit sous-groupe de patients. Les paramètres de PWI moyens, mesurés dans les régions d'intérêts (ROI) délimités manuellement, se sont avérés être d'excellents marqueurs, puisqu'ils permettent de prédire l'évolution du GBM en moyenne un mois plus tôt que le clinicien. Dans une seconde étude, réalisée sur un échantillon plus important que la précédente, la SRM a été remplacée par l'IRMc et la quantification de la PWI et du kurtosis de diffusion (DKI) a été réalisée de manière automatique. L'extraction des paramètres d'imagerie a été effectuée sur des segmentations semi-automatiques des tumeurs, réduisant ainsi le temps nécessaire au clinicien pour la délimitation du ROI de la partie de la lésion rehaussée au produit de contraste (CE-ROI). L'application d'un algorithme modifié de «boosting» sur les paramètres extraits des ROIs a montré une grande précision pour le diagnostic du GBM. Dans une troisième, une version modifiée des cartes paramétriques de réponse (PRM) est proposée pour prendre en compte la région d'infiltration de la tumeur, réduisant toujours plus le temps nécessaire pour la délimitation de la tumeur par le clinicien, puisque toutes les images IRM sont recalées sur la première. Deux façons de générer les RPM ont été comparées, l'une basée sur l'IRMc et l'autre basée sur la PWI, ces deux paramètres étant les meilleurs pour la discrimination de l'évolution du GBM, comme le montrent les deux études précédentes. Les résultats de cette étude montrent que l'emploi de PRM basés sur l'IRMc permet d'obtenir des résultats supérieurs à ceux obtenus avec les PRM basés sur la PWI [etc…

    Classifying glioblastoma multiforme follow-up progressive vs. responsive forms using multi-parametric MRI features

    No full text
    Purpose: The purpose of this paper is discriminating between tumor progression and response to treatment based on follow-up multi-parametric magnetic resonance imaging (MRI) data retrieved from glioblastoma multiforme (GBM) patients. Materials and Methods: Multi-parametric MRI data consisting of conventional MRI (cMRI) and advanced MRI [i.e., perfusion weighted MRI (PWI) and diffusion kurtosis MRI (DKI)] were acquired from 29 GBM patients treated with adjuvant therapy after surgery. We propose an automatic pipeline for processing advanced MRI data and extracting intensity-based histogram features and 3-D texture features using manually and semi-manually delineated regions of interest (ROIs). Classifiers are trained using a leave-one-patient-out cross validation scheme on complete MRI data. Balanced accuracy rate (BAR)-values are computed and compared between different ROIs, MR modalities, and classifiers, using non-parametric multiple comparison tests. Results: Maximum BAR-values using manual delineations are 0.956, 0.85, 0.879, and 0.932, for cMRI, PWI, DKI, and all three MRI modalities combined, respectively. Maximum BAR-values using semi-manual delineations are 0.932, 0.894, 0.885, and 0.947, for cMRI, PWI, DKI, and all three MR modalities combined, respectively. After statistical testing using Kruskal-Wallis and post-hoc Dunn-Šidák analysis we conclude that training a RUSBoost classifier on features extracted using semi-manual delineations on cMRI or on all MRI modalities combined performs best. Conclusions: We present two main conclusions: (1) using T1 post-contrast (T1pc) features extracted from manual total delineations, AdaBoost achieves the highest BAR-value, 0.956; (2) using T1pc-average, T1pc-90th percentile, and Cerebral Blood Volume (CBV) 90th percentile extracted from semi-manually delineated contrast enhancing ROIs, SVM-rbf, and RUSBoost achieve BAR-values of 0.947 and 0.932, respectively. Our findings show that AdaBoost, SVM-rbf, and RUSBoost trained on T1pc and CBV features can differentiate progressive from responsive GBM patients with very high accuracy.status: publishe

    A comparison of Machine Learning approaches for classifying Multiple Sclerosis courses using MRSI and brain segmentations

    No full text
    © Springer International Publishing AG 2017. The objective of this paper is to classify Multiple Sclerosis courses using features extracted from Magnetic Resonance Spectroscopic Imaging (MRSI) combined with brain tissue segmentations of gray matter, white matter, and lesions. To this purpose we trained several classifiers, ranging from simple (i.e. Linear Discriminant Analysis) to state-of-the-art (i.e. Convolutional Neural Networks). We investigate four binary classification tasks and report maximum values of Area Under receiver operating characteristic Curve between 68% and 95%. Our best results were found after training Support Vector Machines with gaussian kernel on MRSI features combined with brain tissue segmentation features.status: publishe
    corecore