18 research outputs found

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Clinical characterisation of sensory neuropathy with anti-FGFR3 autoantibodies

    No full text
    Sensory neuropathies (SNs) are often classified as idiopathic even if immunological mechanisms can be suspected. Antibodies against the intracellular domain of the fibroblast growth factor receptor 3 (FGFR3) possibly identify a subgroup of SN affecting mostly the dorsal root ganglion (DRG). The aim of this study was to identify the frequency of anti-FGFR3 antibodies and the associated clinical pattern in a large cohort of patients with SN. A prospective, multicentric, European and Brazilian study included adults with pure SN. Serum anti-FGRF3 antibodies were analysed by ELISA. Detailed clinical and paraclinical data were collected for each anti-FGFR3-positive patient and as control for anti-FGFR3-negative patients from the same centres ('center-matched'). Sixty-five patients out of 426 (15%) had anti-FGFR3 antibodies, which were the only identified autoimmune markers in 43 patients (66%). The neuropathy was non-length dependent in 89% and classified as sensory neuronopathy in 64%, non-length-dependent small fibre neuropathy in 17% and other neuropathy in 19%. Specific clinical features occurred after 5-6 years of evolution including frequent paresthesia, predominant clinical and electrophysiological involvement of the lower limbs, and a less frequent mixed large and small fibre involvement. Brazilians had a higher frequency of anti-FGFR3 antibodies than Europeans (36% vs 13%, p<0.001), and a more frequent asymmetrical distribution of symptoms (OR 169, 95% CI 3.4 to 8424). Anti-FGFR3 antibodies occur in a subgroup of SN probably predominantly affecting the DRG. Differences between Europeans and Brazilians could suggest involvement of genetic or environmental factors9114957FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP2013/01766-7; 2013/26410-0This study was supported by University hospital of Saint-Etienne (NCT02539329). CPM was funded by the German Research Foundation (DFG; MO 3240/1-1:1) during the study. MCFJ has a research grant on SNN funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, 2013/01766-7). ARMM is supported by PhD scholarship from FAPESP (2013/26410-0

    Journal of Law and Administrative Sciences No. 3/2015

    No full text

    Analele Universităţii 'Constantin Brâncuşi' dinTârgu Jiu - Seria LitereI si Ştinte Sociale Letters and Social Sciences Series, Nr. 4, Issue 4/2012 (Annals of the 'Constantin Brâncuşi' University of Targu Jiu - Letters and Social Sciences Series No. 4/2012)

    No full text

    Research and Science Today

    No full text
    corecore