127 research outputs found

    Central and Peripheral Thermal Signatures of Brain-Derived Fatigue during Unilateral Resistance Exercise: A Preliminary Study

    Get PDF
    Infrared thermography (IRT) allows to evaluate the psychophysiological state associated with emotions from facial temperature modulations. As fatigue is a brain-derived emotion, it is possible to hypothesize that facial temperature could provide information regarding the fatigue related to exercise. The aim of this study was to investigate the capability of IRT to assess the central and peripheral physiological effect of fatigue by measuring facial skin and muscle temperature modulations in response to a unilateral knee extension exercise until exhaustion. Rate of perceived exertion (RPE) was recorded at the end of the exercise. Both time- ( 06TROI: pre\u2013post exercise temperature variation) and frequency-domain ( 06PSD: pre\u2013post exercise power spectral density variation of specific frequency bands) analyses were performed to extract features from regions of interest (ROIs) positioned on the exercised and nonexercised leg, nose tip, and corrugator. The ANOVA-RM revealed a significant difference between 06TROI (F(1.41,9.81) = 15.14; p = 0.0018), and between 06PSD of myogenic (F(1.34,9.39) = 15.20; p = 0.0021) and neurogenic bands (F(1.75,12.26) = 9.96; p = 0.0034) of different ROIs. Moreover, significant correlations between thermal features and RPE were found. These findings suggest that IRT could assess both peripheral and central responses to physical exercise. Its applicability in monitoring the psychophysiological responses to exercise should be further explored

    Transmission through graphene of electrons in the 30 – 900 eV range

    Get PDF
    Here, we report on accurate transmission measurements of electrons below 1 keV through suspended monolayer graphene. Monolayer graphene was grown via chemical vapor deposition and transferred onto transmission electron microscopy (TEM) grids. A monochromatic electron gun has been employed to perform the measurements in the 30 – 900 eV range in ultra-high vacuum. The graphene transparency is obtained from the absolute measurement of the direct beam current and the transmitted one, by means of a Faraday cup. We observed a transmission going from 20 to 80% for monolayer graphene within the experimental electron energy range. The high quality and the grid coverage of the suspended graphene has been proved via micro-Raman, X-ray photoemission, electron energy loss spectroscopies and field-emission scanning electron microscopy. After a 550 °C in-vacuum annealing of the samples, the main contribution to the C 1s spectrum is due to the component and the evidence of suspended monolayer graphene has been observed through the -plasmon excitation

    Phenotype and genotype of 87 patients with Mowat-Wilson syndrome and recommendations for care

    Get PDF
    Mowat-Wilson syndrome (MWS) is a rare intellectual disability/multiple congenital anomalies syndrome caused by heterozygous mutation of the ZEB2 gene. It is generally underestimated because its rarity and phenotypic variability sometimes make it difficult to recognize. Here, we aimed to better delineate the phenotype, natural history, and genotype-phenotype correlations of MWS.MethodsIn a collaborative study, we analyzed clinical data for 87 patients with molecularly confirmed diagnosis. We described the prevalence of all clinical aspects, including attainment of neurodevelopmental milestones, and compared the data with the various types of underlying ZEB2 pathogenic variations.ResultsAll anthropometric, somatic, and behavioral features reported here outline a variable but highly consistent phenotype. By presenting the most comprehensive evaluation of MWS to date, we define its clinical evolution occurring with age and derive suggestions for patient management. Furthermore, we observe that its severity correlates with the kind of ZEB2 variation involved, ranging from ZEB2 locus deletions, associated with severe phenotypes, to rare nonmissense intragenic mutations predicted to preserve some ZEB2 protein functionality, accompanying milder clinical presentations.ConclusionKnowledge of the phenotypic spectrum of MWS and its correlation with the genotype will improve its detection rate and the prediction of its features, thus improving patient care.GENETICS in MEDICINE advance online publication, 4 January 2018; doi:10.1038/gim.2017.221
    • …
    corecore