66 research outputs found

    Limb Lengthening and Reconstruction Society AIM Index Reliably Assesses Lower Limb Deformity

    Get PDF
    Abstract Background Although several systems exist for classifying specific limb deformities, there currently are no validated rating scales for evaluating the complexity of general lower limb deformities. Accurate assessment of the complexity of a limb deformity is essential for successful treatment. A committee of the Limb Lengthening and Reconstruction Society (LLRS) therefore developed the LLRS AIM Index to quantify the severity of a broad range of lower extremity deformities in seven domains. Questions/Purposes We addressed two questions: (1) Does the LLRS AIM Index show construct validity by correlating with rankings of case complexity? (2) Does the LLRS AIM Index show sufficient interrater and intrarater reliabilities? Methods We had eight surgeons evaluate 10 fictionalized patients with various lower limb deformities. First, they ranked the cases from simplest to most complex, and then they rated the cases using the LLRS AIM Index. Two or more weeks later, they rated the cases again. We assessed reliability using the Kendall's W test. Results Raters were consistent in their rankings of case complexity (W = 0.33). Patient rankings also correlated with both sets of LLRS AIM ratings (r 2 = 0.25; r 2 = 0.23). The LLRS AIM Index showed interrater reliability with an intraclass correlation (ICC) of 0.97 for Trial 1 and 0.98 for Trial 2 and intrarater reliability with an ICC of 0.94. The LLRS AIM Index ratings also were highly consistent between the attending surgeons and surgeons-in-training (ICC = 0.91). Conclusions Our preliminarily observations suggest that the LLRS AIM Index reliably classifies the complexity of lower limb deformities in and between observers

    Targeted glycoproteomic identification of cancer cell glycosylation

    Get PDF
    GalMBP is a fragment of serum mannose-binding protein that has been modified to create a probe for galactose-containing ligands. Glycan array screening demonstrated that the carbohydrate-recognition domain of GalMBP selectively binds common groups of tumor-associated glycans, including Lewis-type structures and T antigen, suggesting that engineered glycan-binding proteins such as GalMBP represent novel tools for the characterization of glycoproteins bearing tumor-associated glycans. Blotting of cell extracts and membranes from MCF7 breast cancer cells with radiolabeled GalMBP was used to demonstrate that it binds to a selected set of high molecular weight glycoproteins that could be purified from MCF7 cells on an affinity column constructed with GalMBP. Proteomic and glycomic analysis of these glycoproteins by mass spectrometry showed that they are forms of CD98hc that bear glycans displaying heavily fucosylated termini, including Lewisx and Lewisy structures. The pool of ligands was found to include the target ligands for anti-CD15 antibodies, which are commonly used to detect Lewisx antigen on tumors, and for the endothelial scavenger receptor C-type lectin, which may be involved in tumor metastasis through interactions with this antigen. A survey of additional breast cancer cell lines reveals that there is wide variation in the types of glycosylation that lead to binding of GalMBP. Higher levels of binding are associated either with the presence of outer-arm fucosylated structures carried on a variety of different cell surface glycoproteins or with the presence of high levels of the mucin MUC1 bearing T antigen

    The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications

    Get PDF
    Background: Rice is an important staple food and, with the smallest cereal genome, serves as a reference species for studies on the evolution of cereals and other grasses. Therefore, decoding its entire genome will be a prerequisite for applied and basic research on this species and all other cereals. Results: We have determined and analyzed the complete sequences of two of its chromosomes, 11 and 12, which total 55.9 Mb (14.3% of the entire genome length), based on a set of overlapping clones. A total of 5,993 non-transposable element related genes are present on these chromosomes. Among them are 289 disease resistance-like and 28 defense-response genes, a higher proportion of these categories than on any other rice chromosome. A three-Mb segment on both chromosomes resulted from a duplication 7.7 million years ago (mya), the most recent large-scale duplication in the rice genome. Paralogous gene copies within this segmental duplication can be aligned with genomic assemblies from sorghum and maize. Although these gene copies are preserved on both chromosomes, their expression patterns have diverged. When the gene order of rice chromosomes 11 and 12 was compared to wheat gene loci, significant synteny between these orthologous regions was detected, illustrating the presence of conserved genes alternating with recently evolved genes. Conclusion: Because the resistance and defense response genes, enriched on these chromosomes relative to the whole genome, also occur in clusters, they provide a preferred target for breeding durable disease resistance in rice and the isolation of their allelic variants. The recent duplication of a large chromosomal segment coupled with the high density of disease resistance gene clusters makes this the most recently evolved part of the rice genome. Based on syntenic alignments of these chromosomes, rice chromosome 11 and 12 do not appear to have resulted from a single whole-genome duplication event as previously suggested

    Synthesis of 2,2-Diphenyl-5-cyanocyclopentanone

    No full text

    Genome-Wide Transcriptional Changes in Streptococcus gordonii in Response to Competence Signaling Peptide▿ †

    No full text
    Streptococcus gordonii is a primary colonizer of the multispecies biofilm on tooth surfaces forming dental plaque and a potential agent of endocarditis. The recent completion of the genome sequence of the naturally competent strain Challis allowed the design of a spotted oligonucleotide microarray to examine a genome-wide response of this organism to environmental stimuli such as signal peptides. Based on temporal responses to synthetic competence signaling peptide (CSP) as indicated by transformation frequencies, the S. gordonii transcriptome was analyzed at various time points after CSP exposure. Microarray analysis identified 35 candidate early genes and 127 candidate late genes that were up-regulated at 5 and 15 min, respectively; these genes were often grouped in clusters. Results supported published findings on S. gordonii competence, showing up-regulation of 12 of 16 genes that have been reported to affect transformation frequencies in this species. Comparison of CSP-induced S. gordonii transcriptomes to results published for Streptococcus pneumoniae strains identified both conserved and species-specific genes. Putative intergenic regulatory sites, such as the conserved combox sequence thought to be a binding site for competence sigma factor, were found preceding S. gordonii late responsive genes. In contrast, S. gordonii early CSP-responsive genes were not preceded by the direct repeats found in S. pneumoniae. These studies provide the first insights into a genome-wide transcriptional response of an oral commensal organism. They offer an extensive analysis of transcriptional changes that accompany competence in S. gordonii and form a basis for future intra- and interspecies comparative analyses of this ecologically important phenotype

    Regulation of Gene Expression in a Mixed-Genus Community: Stabilized Arginine Biosynthesis in Streptococcus gordonii by Coaggregation with Actinomyces naeslundii▿

    No full text
    Interactions involving genetically distinct bacteria, for example, between oral streptococci and actinomyces, are central to dental plaque development. A DNA microarray identified Streptococcus gordonii genes regulated in response to coaggregation with Actinomyces naeslundii. The expression of 23 genes changed >3-fold in coaggregates, including that of 9 genes involved in arginine biosynthesis and transport. The capacity of S. gordonii to synthesize arginine was assessed using a chemically defined growth medium. In monoculture, streptococcal arginine biosynthesis was inefficient and streptococci could not grow aerobically at low arginine concentrations. In dual-species cultures containing coaggregates, however, S. gordonii grew to high cell density at low arginine concentrations. Equivalent cocultures without coaggregates showed no growth until coaggregation was evident (9 h). An argH mutant was unable to grow at low arginine concentrations with or without A. naeslundii, indicating that arginine biosynthesis was essential for coaggregation-induced streptococcal growth. Using quantitative reverse transcriptase PCR, the expression of argC, argG, and pyrAb was strongly (10- to 100-fold) up-regulated in S. gordonii monocultures after 3 h of growth when exogenous arginine was depleted. Cocultures without induced coaggregation showed similar regulation. However, within 1 h after coaggregation with A. naeslundii, the expression of argC, argG, and pyrAb in S. gordonii was partially up-regulated although arginine was plentiful, and mRNA levels did not increase further when arginine was diminished. Thus, A. naeslundii stabilizes S. gordonii expression of arginine biosynthesis genes in coaggregates but not cocultures and enables aerobic growth when exogenous arginine is limited
    corecore