145,017 research outputs found

    Neural networks and spectra feature selection for retrival of hot gases temperature profiles

    Get PDF
    Proceeding of: International Conference on Computational Intelligence for Modelling, Control and Automation, 2005 and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, Vienna, Austria 28-30 Nov. 2005Neural networks appear to be a promising tool to solve the so-called inverse problems focused to obtain a retrieval of certain physical properties related to the radiative transference of energy. In this paper the capability of neural networks to retrieve the temperature profile in a combustion environment is proposed. Temperature profile retrieval will be obtained from the measurement of the spectral distribution of energy radiated by the hot gases (combustion products) at wavelengths corresponding to the infrared region. High spectral resolution is usually needed to gain a certain accuracy in the retrieval process. However, this great amount of information makes mandatory a reduction of the dimensionality of the problem. In this sense a careful selection of wavelengths in the spectrum must be performed. With this purpose principal component analysis technique is used to automatically determine those wavelengths in the spectrum that carry relevant information on temperature distribution. A multilayer perceptron will be trained with the different energies associated to the selected wavelengths. The results presented show that multilayer perceptron combined with principal component analysis is a suitable alternative in this field.Publicad

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    The management of intelligence-assisted finite element analysis technology

    Get PDF
    Artificial Intelligence (AI) approaches to Finite Element Analysis (FEA), have had tentative degrees of success over the last few years and some authors have argued that effective FEA can help in the manufacture reliability and safety aspects of engineered artefacts. The author of this paper reviews how such AI techniques have been applied and in this light, the author then uses a Fuzzy Cognitive Mapping (FCM), to develop a framework for the management of intelligence-assisted FEA

    Multi-agent evolutionary systems for the generation of complex virtual worlds

    Full text link
    Modern films, games and virtual reality applications are dependent on convincing computer graphics. Highly complex models are a requirement for the successful delivery of many scenes and environments. While workflows such as rendering, compositing and animation have been streamlined to accommodate increasing demands, modelling complex models is still a laborious task. This paper introduces the computational benefits of an Interactive Genetic Algorithm (IGA) to computer graphics modelling while compensating the effects of user fatigue, a common issue with Interactive Evolutionary Computation. An intelligent agent is used in conjunction with an IGA that offers the potential to reduce the effects of user fatigue by learning from the choices made by the human designer and directing the search accordingly. This workflow accelerates the layout and distribution of basic elements to form complex models. It captures the designer's intent through interaction, and encourages playful discovery

    2005 International Conference on Computational Intelligence for Modelling, Control and Automation (CIMCA 2005)

    Get PDF
    The framework in Bayesian learning algorithms is based on the assumptions that the quantities of interest are governed by probability distributions, and that optimal decisions can be made by reasoning about these probabilities together with the data. In this paper, a Bayesian ensemble learning approach based on enhanced least square backpropagation (LSB) neural network training algorithm is proposed for blind signal separation problem. The method uses a three layer neural network with an enhanced LSB training algorithm to model the unknown blind mixing system. Ensemble learning is applied to estimate the parametric approximation of the posterior probability density function (pdf). The Kullback- Leibler information divergence is used as the cost function in the paper. The experimental results on both artificial data and real recordings demonstrate that the proposed algorithm can separate blind signals very wel
    corecore