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Abstract

Neural networks appear to be a promising tool to solve
the so-called inverse problems focused to obtain a retrieval
of certain physical properties related to the radiative trans-
ference of energy. In this paper the capability of neural net-
works to retrieve the temperature profile in a combustion en-
vironment is proposed. Temperature profile retrieval will be
obtained from the measurement of the spectral distribution
of energy radiated by the hot gases (combustion products)
at wavelengths corresponding to the infrared region. High
spectral resolution is usually needed to gain a certain ac-
curacy in the retrieval process. However, this great amount
of information makes mandatory a reduction of the dimen-
sionality of the problem. In this sense a careful selection of
wavelengths in the spectrum must be performed. With this
purpose Principal Component Analysis technique is used to
automatically determine those wavelengths in the spectrum
that carry relevant information on temperature distribution.
A multilayer perceptron will be trained with the different en-
ergies associated to the selected wavelengths. The results
presented show that multilayer perceptron combined with
Principal Component Analysis is a suitable alternative in
this field.

1. Introduction

Progress in optoelectronic technologies during last
decade has led to the fabrication of new sensors to measure
the radiated energy focused on new measurement concept
based on high spectral resolution measurements. High res-
olution measurements implies a better understanding of the
physical properties related to the radiated energy. However
the amount of information increases in a way that makes
difficult the use of conventional data regression techniques
to retrieve the physical information involved in the problem.

Many problems could be found in these kind of re-
trievals, related with data dimension or complexity of re-
gression models which implies a large number of operations
to solve it. This large amount of data led to try new tech-
niques for the retrieval of this information.

The artificial neural networks seem to be an interest-
ing alternative technique to solve this kind of problems.
One important advantage of neural networks in this field
is their speed. Once the neural network has been trained
the inversion method is almost instantaneous in comparison
to regressions models. Another advantages over classical
physical-statistical techniques are that do not need a good
initial condition for the inversion and do not need a rapid
direct model for iterative inversion algorithms.

The goal of this study is to present an inversion method
that retrieves the temperature profile of a hot gas cloud com-
posed by CO2 and water vapor from spectroradiometric
measurements. This problem is related to ill-posed prob-
lems and corresponds with inverse radiative problems[13].
To do it, a multilayer perceptron (MLP) approximation has
been adopted.

In previous works, neural networks have been used to
retrieve the atmospheric temperature[3], although the prob-
lem here is quite different because of the temperature in-
tervals are bigger and hotter, and in atmospheric retrieval
the length is known a priori which simplifies the inverse
model. In our case we have a complex relationship be-
tween optical path and temperature whose influence vary
in the straightforward model following Beer’s law, and in
the inverse model we do not know how this relationship is
because both factors have a non-linear influence in all the
spectrum measurements.

In a first approach, MLP has been trained using the
whole spectrum which implies a large number of input
nodes in the network with redundant and noisy informa-
tion. Usually as more data are used better results would be
expected in the retrieval algorithm, but at the same time a
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problem of data management begin. The high dimensional-
ity of input space could prevent an appropriate performance
of MLP and an elevated time learning might be required.
To reduce the dimensionality of the input space, a second
approach is proposed. In this approach, a reduction dimen-
sionality technique is used to decide in an automatic way
the most relevant wavelengths in the spectrum. After, MLP
is trained using those wavelengths with the purpose to re-
duce as the complexity of the network as the cost for the
learning phase.

In this work, Principal Component Analysis (PCA) has
been used to reduce the number of input neurons of MLP.
PCA is a multivariate statistical analysis introduce by Pear-
son (1901)[14], and developed independently by Hotelling
(1933)[8]. PCA involves a mathematical procedure that
transforms a number of correlated variables into a smaller
number of uncorrelated variables called principal compo-
nents. The first principal component accounts for as much
of the variability in the data as possible, and each succeed-
ing component accounts for as much of the remaining vari-
ability as possible.

The main intention using PCA technique, as previously
mentioned, is to reduce the dimensionality finding a new
input dimension in which the correlated variables are elim-
inated and preserve most of the variation about temperature
and length. Thus, it will be possible to approach the prob-
lem with MLP with high resolution measurements and eval-
uate whether the performance of the MLP when the input
variables are those corresponding with the results of data
set reduction is higher or like equal minimum than the per-
formance of MLP trained with the whole spectrum.

The rest of the paper is organized as follows: In section 2
a context description of retrieval of temperature profiles in
flames is made. Section 3 describes the simulations carried
out and the obtained results. This section includes also the
use of PCA to reduce the dimensionality of the input space
for the MLP. Finally, conclusions are presented in section 4.

2 Description of the Problem: Retrieval of
Temperature Profiles in Flames

In a industrial fuel fired furnace, it is very impor-
tant to have devices that monitor and control the com-
bustion process in order to minimize pollutant emissions
as well as to optimize energy losses. Flame temperature
appears, among others, as a very important parameter to
be monitored[15][18][12][11]. Conventional temperature
monitoring devices such thermocouples are intrusive and
disturb the measurement, and they must undergo the harsh
furnace environment. Remote optical measurements are
more suitable because they are non-intrusive. Ultraviolet,
visible and infrared detectors have been used in flame mon-
itoring systems[15]. Infrared sensing appears to be very

promising, because the hot gases in the flame, mainly car-
bon dioxide (CO2) and water vapor (H2O) exhibit impor-
tant emission bands in the infrared region. A recent trend
in flame thermometry is based on spectrometric measure-
ments that discriminate the received energy as function of
the wavelength. An example is the application of the so-
called emission-transmission method by using tunable in-
frared laser and optical fiber[12]. This technique is an ac-
tive technique, because it uses an infrared source in addition
to the sensor system. These methods are very sensitive, but
their high cost and complexity makes them not very suitable
for routine operations in industrial furnaces.

This paper presents some results within the framework
of an authors general proposal to use passive infrared spec-
troscopy to recover the temperature profile inside a hot gas
cloud composed by CO2 and water vapor, representative
of a fossil fuel combustion. The experimental equipment
to be used is a sensor (for instance a commercial spec-
troradiometer) that measures directly the spectral distribu-
tion of radiated energy by the flame in the infrared spectral
range.In this way the infrared source is not necessary (pas-
sive measurement). The selected spectral range is 3-5 μm,
because carbon dioxide presents a strong emission band in
this region[4]. Moreover, this range is commonly imple-
mented in infrared systems, because atmospheric absorp-
tion is not very important1.

The problem to obtain the temperature profile from such
a spectrum is not straightforward. Energy emission at each
wavenumber depends in a non-linear way on parameters
like the spatial distribution of temperature and gas concen-
trations, or the gas cloud width. Moreover each wavenum-
ber emission depends in a different way on these parame-
ters. To illustrate these difficulties, figure 1 shows a theoret-
ical calculation of the CO2 emission band for three different
situations: a CO2 cloud 100 cm wide at 1000 K, the same
cloud but 1 cm wide and a CO2 cloud 100 cm wide with a
temperature exponentially decayed from 1000 K to 400 K.
It is very clear from the figure that the shape of the tempera-
ture profile and the width of the cloud are key parameters to
understand the information involved in the energy emission
spectrum.

3 Temperature Retrieval Using Neural Net-
works

Neural networks techniques can be used as an approach
to solving problems of fitting experimental data. In the con-
text of approximation of nonlinear maps, the architecture
most widely used is the MLP. It is relatively quite straight-

1Note the magnitude at the X axis: it is common for spectroscopists to
use the wavenumber n instead of the wavelength l. Wavenumber is defined
as the inverse of wavelength, and it is typically measured in cm-1 in the
infrared spectral region.
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Figure 1. CO2 emission band calculated for: a) a cell of width

L=100 cm and uniform temperature T= 1000 K; b) a cell of width

L=1 cm and uniform temperature T= 1000 K; c) a cell of width

L=100 cm and a temperature distribution (Gaussian profile).

forward to use and it has been proven by different authors
that they are universal approximators ([5], [7]), in the sense
that any continuous function may be represented by a MLP
with one hidden layer.

The MLP neural network has their neurons divided into
disjoint subsets, called layers. It is composed by the in-
put layer, that receives the external data, the last layer that
acts as the output of the network and the intermediate lay-
ers called hidden layers. Two consecutive layers are con-
nected via synaptic connections that have associated a real
number, called weight of the connection. Each neuron in
a layer forms a weighted sum of the inputs from previous
layers to which it is connected, adds a threshold value and
apply the activation function (sigmoidal function) produc-
ing its activation or output value. The adjustable param-
eters of the MLP (weights and thresholds) are determined
using the well known backpropagation learning algorithm
[17], which updates the parameters to minimize the error
between the vector output of the network and the desired
vector output.

In the next, the procedure to obtain the data sets to train
MLPs is explained. After, the results of different experi-
mental simulations are shown. In a first approach, MLPs
use as input variables the whole spectrum. The second ap-
proach try to reduce the input dimensionality of the network
using the PCAs technique.

The performance of different approaches is measured, in
one hand, in terms of mean square error over the training
and test data sets and, in other hand, in terms of average
temperature error per profile and for the hottest cell. The
hottest cell is used as criterion because it’s retrieval is the
most difficult due to the fact that energy emitted by this cell
is absorbed by the others which behave as a mask.

3.1 Experimental Data Sets

The data set is composed of large number of synthetic
emission spectra generated with a computer code developed
at University Carlos III (CASIMIR)[6] based on the well
known HITRAN/HITEMP[16] spectral database. The total
number of cases simulated are 1040 covering many possible
sceneries of a typical flame combustion. Data set generation
has been performed under the following assumptions:

• Synthetic spectra will correspond to energy emission
of hot gas cloud of width L. Temperature and gas con-
centrations present gradients inside the cloud.

• The spectral range selected for this data set is
2000cm−1-2500cm−1. Most of the commercial in-
frared instruments have capabilities to measure in this
range. In this spectral range, the CO2 emission band is
by far the most important emission feature, being the
water emission nearly negligible. Due to this fact, only
the emission associated to the CO2 will be considered.

• For retrieval scheme, we have used an spatial dis-
cretization in a basic case with five cells of equal width
(L/5). Each cell has an average value of temperature
and gas concentration.

• The objective of this study is focus on the dependence
of the spectral energy distribution on temperature pro-
file and length. For this reason the concentration pro-
files for carbon dioxide and water vapor will keep un-
changed for the whole data set. Numerical values for
these concentrations have been selected from typical
combustion experiments.

• Four basic temperature profiles have been chosen to
simulate different temperature gradient. The step be-
tween the temperature of two consecutive synthetics
flames is ΔT = 50 K, with a variation in the hottest
cell among 540 K and 1140 K. And for each of these
variations of temperature, a variation of cell’s length
is done. These variation have an step of Δw = 0.02
meters for each cell which means a total step variation
ΔW = 0.1 meters, covering a range between 0.1 and 2
meters. These profiles adjusted to a spatial discretiza-
tion of five cells can be seen in figure 2. In these simu-
lations the most unfavorable situation from energy de-
tection point of view has been always chosen: the cell
corresponding to the hottest part of the cloud is located
opposite from the location of the sensor system. All
the value ranges for temperature and length have been
chosen to be representative for hot gases clouds asso-
ciated to fossil fuel combustion.

• Experimental noise of spectra has not been simulated
in order to avoid the extraction of features associated
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with it when principal component analysis is being
used.

Figure 2. Temperature profiles variations for retrieval scheme.

3.2 First Approach: Using the Whole Fre-
quency Spectrum

In a first phase, MLP has been trained using the whole
spectrum. In this case the experiments have done with 247
dimensions (medium spectral resolution) but experiments
with higher spectral resolution -1,000 dimensions in the
same spectral region and near 10,000 if many regions are
selected- will be done in the future. As it has been ex-
plained in subsection 3.1 the profiles of temperature are
discretized to five cells, so the output layer will have six
neurons, one for each temperature cell and another one
for the total length2. We must include the length because
of both parameters, temperature and optical depth or total
length, have influence in the composition of the spectrum in
agreement to the Lambert-Beer law. Different architectures
of MLP varying the number of hidden neurons have been
trained until to reach the minimum value in validation error,
not allowing overfitting. In table 1, the mean square error
over the trained and test data for different architectures are
shown. The table also included the mean error per profile
and the mean error on the hottest cell.

It is possible to observe that for a small number of hidden
neurons the MLP converges without good results due to the
high number of inputs, so more hidden neurons are needed.
For an architecture of one level with 20 or 30 hidden neu-
rons better approximations are obtained with a relative error
of 0.8% in the hottest cell, a mean temperature error of 7.44
K and a relative error of length of 2.6% which is an accept-
able accuracy in our study.

2We are assuming in the discretization that all the cells have the same
length so we do not include one per each cell.

Table 1. Errors for the hot gas temperature retrieval using a MLP

with 247 inputs and different architectures.
Hidden Mean error Mean error
neurons MSE Train MSE Test per profile (K) hottest cell (K)

10 0.00430 0.00800 22.41 13.60
10x10 0.00244 0.00230 13.48 7.47

20 0.00064 0.00112 7.66 6.57
40 0.00043 0.00102 7.88 7.82
30 0.00026 0.00101 7.44 6.63

3.3 Second Approach: Feature Selection
for Dimension Reduction with PCA

In order to introduce a priori information in the MLP
helping the learning process and speed it up, a dimension
reduction approach has been assumed. This reduction try to
conserve all the information of any possible scenery in a few
components stressing the importance of that wavelengths
whose influence in the temperature and length profile are
important. This reduction is known as feature selection and
the technique used to make it, is the widely known PCA.
The central idea of PCA is to reduce the dimensionality of
data set in which there are a large number of interrelated
variables, while retaining as much as possible of the varia-
tion present in the data set. This reduction is achieved by
transforming to a new set of variables, the principal com-
ponents, which are uncorrelated, and which are ordered so
that the first few retain most of the variation present in all of
the original variables[10]. The new base is composed of a
set of axes which will be orthogonal between them and are
calculated as a lineal combination of the old base.

Also a dimension reduction could be done using the pro-
jections of the original data over this new base, but during
the experiments realized the results obtained have been al-
ways worst than with a feature selection method and conse-
quently has been rejected.

Let C={eM
1 , . . . , eM

n } be a data set of n spectrum of di-
mension M = 247 variables. Let Σ be the covariance matrix
of the data set C with dimension M x M. Let V the M x M
matrix with columns equal to eigenvectors of Σ and let L be
the diagonal M x M matrix with the M associated eigenval-
ues (by definition Σ · V = V · L).

The selection of m specific channels from M variables
where m � M, allows to work with lower dimensionality.
This m subset of variables contains virtually all the infor-
mation available in M variables. The problem then is to
find the value of m, and to decide which subset or subsets
of m variables are best. Here we want to find that variables
which best represent the internal variation of C to find out
which channels are significant (feature selection). In other
cases the linear correlation between PCs and channels are
used to interpret the physical meaning[9], or to get a first
retrieval approximation[2]. To resolve the question about
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Table 2. Cumulated percentage of variance for spectrum data set

generated.

Number of PCA components Cumulated variance %
1 88.58
2 97.05
3 99.46
4 99.81
5 99.88
6 99.94
7 99.97
8 99.98
9 99.98

10 99.98
11 99.98
12 99.99

how many m variables we have to consider, we will check
the number of PCs that account for most of the variation
in a spectrum ex of the data set C. This can also be inter-
preted as finding the effective dimensionality of ex. If ex

can be successfully described by only m PCs, then it will
often be true that p can be replaced by a subset m (or per-
haps slightly more) variables, with a relative small loss of
information[10][136-137].

First step in a PCA approach is to calculate the covari-
ance matrix of dimensions 247 x 247. The eigenvalues and
the corresponding eigenvectors of this covariance matrix
are computed using the QR and QL algorithms[19]. The
results obtained as cumulative percentage of variance are
shown in table 2. Between fifth and sixth principal compo-
nent, around the 99.9% of the total variation it is covered
and the spectrum could be reconstruct almost without error.
Furthermore we have visualized the projections of the data
set for this first principal components trying to find clusters
and we have found that with five PCs we can do a first ap-
proximation clustering (k-means) by temperature and total
length. It means that the projections in these first five PCs
have information about temperature and length scales. To
select of subset of variables from this first five PCs a peak
peaks algorithm has been chosen trying to search for the
most important groups coefficients of each eigenspectrum3

in absolute value.
The results can be seen in figure 3 and the selected data is

mark with arrows and their wavelength. Because we are not
trying to get the best reduction, but to improve or compare
the retrieval results with the use of all the wavelengths, a
first approximation of m = 17 has been adopted.

As in the previous phase, different number of hidden

3Eigenspectrum is the eigenvector matrix which corresponds to the Σ
matrix of the spectrum data set.

Figure 3. First 5 infrared region eigenspectrum (2000cm−1 -

2500cm−1) with the wavenumber selected for the reduction of

dimensionality.

neurons has been tested. The results are shown in table 3.

Table 3. Errors for the hot gas temperature retrieval using a MLP

with 17 inputs and different architectures.
Hidden Mean error Mean error
neurons MSE Train MSE Test per profile (K) hottest cell (K)

10 0.00238 0.00403 17.13 10.14
20 0.00123 0.00126 8.94 6.52

10x10 0.00117 0.00119 8.52 7.00
40 0.00066 0.00085 6.65 6.86
30 0.00068 0.00079 6.58 5.39

This second approach improve the results obtained using
all the spectra wavelengths with a relative error of 0.64% in
the hottest cell, a mean temperature error of 6.58 K and a
relative error of length of 2.9% for the best case. It is inter-
esting to look at the difference between this approach and
the first one for architecture with 30 and 40 hidden layers.
In first approach (see table 1) the MSE train error tends to
decrease to 0 however the MSE test error tends to level off
or grow which could imply that it is producing overfitting.
Instead of this, in the second approach the errors tend to
decrease and reach the convergence together without over-
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fitting. This could be interpreted as if the large amount of
data used would be acting as noise (also called the curse of
dimensionality) for the retrieval, and the reduction we have
done seems to reduce also this kind of noise.

4 Conclusions

Retrieval of temperature profile inside a hot gas cloud
from the energy spectrum is a problem where neural net-
works can contribute in a efficient way to solve it. Classical
physical-statistical techniques present the disadvantage of
their low speed. In addition, they depend on the initial con-
ditions and iterative inversion algorithms also need a high
speed module to solve the direct model. On the other hand,
neural networks present their speed as the most important
advantage in this field. Once the MLP has been trained the
inversion method is almost instantaneous.

CASIMIR has been used to calculate a data set at mod-
erated spectral resolution (4 cm−1) because conditions on
the spatial resolution of the temperature profile are not very
severe. However, an improvement of this spatial resolu-
tion will demand an improvement in the spectral resolution.
This better resolution results in an energy spectrum with a
very high number of wavenumbers. This high number of
entries is a serious drawback to the use of neural networks
in this framework.

In this work, a combination of MLP and a feature se-
lection has been used with the purpose of approximate the
temperature profile of the hot gas and to allow working with
high spectral resolution.

The results presented in section 3.2 show the capabil-
ity of neural networks to retrieve the temperature profile
in a hot cloud composed by CO2 and H2O simulating a
combustion environment. Retrieval is performed over the
infrared emission spectrum with relative errors below 1%
in the hottest cell (temperatures between 540-1140 K), giv-
ing satisfactory results. Reference values in literature show
that a temperature measurement with an error of 0.5–1% is
considered an accurate measurement in the range of 1200–
2000 K. The DT025 sensor is a commercial ”intrusive” ther-
mocouple with a maximum error of 0.5%. This sensor is
considered to be ”extremely accurate”. The digital image
system[12]also has relative errors no greater than 1% in the
range 1280–1690 oC. And systems based in diode laser ab-
sorption sensors have errors around 4%[1]. Furthermore,
the results presented in section 3.3 equalize or even improve
the previous ones using only the 7% of the spectrum data as
input, and resolving the problem of dimensionality. Thus, a
spectral feature selection using principal component analy-
sis technique seems to be a good solution to get the variabil-
ity of the spectrum when a perturbation in the temperature
profile or length happened in order to reconstruct the tem-
perature profile using neural networks.
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