217 research outputs found

    Drivers of success in implementing sustainable tourism policies in urban areas

    Get PDF
    The existing literature in the field of sustainable tourism highlights a number of barriers that impede the implementation of policies in this area. Yet, not many studies have so far considered the factors that would contribute to putting this concept into practice, and few address the case of urban areas. The concept of sustainability has only received limited attention in urban tourism research, even though large cities are recognised as one of the most important tourist destinations that attract vast numbers of visitors. Adopting a case study approach, this paper discusses a number of drivers of success identified by policy-makers in London to contribute to the implementation of sustainable tourisms policies at the local level, and briefly looks at the relationship between these drivers and the constraints perceived by the respondents to hinder the implementation of such policies in practice. These findings may help policy-makers in other large cities to successfully develop and implement policies towards sustainable development of tourism in their area

    Mass Spectrometric Mapping of the DNA Adductome as a Means to Study Genotoxin Exposure, Metabolism, and Effect.

    Get PDF
    Covalent binding of endo- or exogenous chemicals to DNA results in the formation of DNA adducts which are reflective of exposure of the human body to DNA-damaging molecules and their metabolic pathways. The study of DNA adduct types and levels in human tissue therefore offers an interesting tool in several fields of research, including toxicology and cancer epidemiology. Over the years, a range of techniques and methods have been developed to study the formation of endo- and exogenous DNA adducts. However, for the simultaneous detection, identification and quantification of both known and unknown DNA adducts, mass spectrometry (MS) is deemed to be the most promising technique. In this perspective, we focus on the analysis of multiple DNA adducts within a sample with the emphasis on untargeted analysis. The advantageous use of MS methodologies for DNA adductome mapping is discussed comprehensively with relevant field examples. In addition, several aspects of study design, sample pretreatment, and analysis are addressed as these factors significantly affect the reliability of DNA adductomics studies

    Applying social influence insights to encourage climate resilient domestic water behaviour: Bridging the theory-practice gap

    Get PDF
    Water scarcity is one of the most pressing issues of our time and it is projected to increase as global demand surges and climate change limits fresh water availability. If we are to reduce water demand, it is essential that we draw on every tool in the box, including one that is underestimated and underutilised: social influence. Research from the psychological sciences demonstrates that behaviour is strongly influenced by the behaviour of others, and that social influence can be harnessed to develop cost-effective strategies to encourage climate resilient behaviour. Far less attention has been paid to investigating water-related interventions in comparison to interventions surrounding energy. In this paper we consider the application of three social influence strategies to encourage water conservation: social norms; social identity; and socially-comparative feedback. We not only review their empirical evidence base, but also offer an example of their application in the residential sector with the aim of highlighting how theoretical insights can be translated into practice. We argue that collaborations between researchers and industry are essential if we are to maximise the potential of behaviour change interventions to encourage climate resilient water behaviour

    Education for Environmental Citizenship and Responsible Environmental Behaviour

    Get PDF
    The notion of Environmental Citizenship embodies behaviour – an actively involved citizen who exercises his/her environmental rights and obligations in the private and public spheres. Education for Environmental Citizenship implies behavioural change; its goal is to facilitate an individual’s intellectual growth (cognitive domain) and emotional capacity (affective domain) that may lead to a critical and actively engaged individual. Human behaviour is overwhelmingly sophisticated, and what shapes pro-environmental behaviour is complex and context specific. Furthermore, empirical research indicates a discrepancy between possessing environmental knowledge and environmentally supportive attitudes and behaving pro-environmentally. The point of departure of this chapter is that the social and psychological study of behaviour has much to inform the study of environmental behaviour and, deriving from this, to inform regarding the type of education towards behaviour/action in the goal of sustainable socioecological transformation. The chapter focuses on internal (psychosocial) factors. It presents selected models regarding factors influencing behavioural decisions that are acknowledged as influential theoretical frameworks for investigating pro-environmental behaviour, as well as various theories that inform these models. These are categorised into knowledge-based models; attitude-, value- and norm-oriented models; skills, self-efficacy and situational factors; and new approaches to environmental behaviour models. The chapter concludes with suggestions for Education for Environmental Citizenship deriving from the various models

    Coordinating Environmental Genomics and Geochemistry Reveals Metabolic Transitions in a Hot Spring Ecosystem

    Get PDF
    We have constructed a conceptual model of biogeochemical cycles and metabolic and microbial community shifts within a hot spring ecosystem via coordinated analysis of the “Bison Pool” (BP) Environmental Genome and a complementary contextual geochemical dataset of ∼75 geochemical parameters. 2,321 16S rRNA clones and 470 megabases of environmental sequence data were produced from biofilms at five sites along the outflow of BP, an alkaline hot spring in Sentinel Meadow (Lower Geyser Basin) of Yellowstone National Park. This channel acts as a >22 m gradient of decreasing temperature, increasing dissolved oxygen, and changing availability of biologically important chemical species, such as those containing nitrogen and sulfur. Microbial life at BP transitions from a 92°C chemotrophic streamer biofilm community in the BP source pool to a 56°C phototrophic mat community. We improved automated annotation of the BP environmental genomes using BLAST-based Markov clustering. We have also assigned environmental genome sequences to individual microbial community members by complementing traditional homology-based assignment with nucleotide word-usage algorithms, allowing more than 70% of all reads to be assigned to source organisms. This assignment yields high genome coverage in dominant community members, facilitating reconstruction of nearly complete metabolic profiles and in-depth analysis of the relation between geochemical and metabolic changes along the outflow. We show that changes in environmental conditions and energy availability are associated with dramatic shifts in microbial communities and metabolic function. We have also identified an organism constituting a novel phylum in a metabolic “transition” community, located physically between the chemotroph- and phototroph-dominated sites. The complementary analysis of biogeochemical and environmental genomic data from BP has allowed us to build ecosystem-based conceptual models for this hot spring, reconstructing whole metabolic networks in order to illuminate community roles in shaping and responding to geochemical variability

    Hydration of dicalcium silicate and diffusion through neo-formed calcium-silicate-hydrates at weathered surfaces control the long-term leaching behaviour of basic oxygen furnace (BOF) steelmaking slag

    Get PDF
    Alkalinity generation and toxic trace metal (such as vanadium) leaching from basic oxygen furnace (BOF) steel slag particles must be properly understood and managed by pre-conditioning if beneficial reuse of slag is to be maximised. Water leaching under aerated conditions was investigated using fresh BOF slag at three different particle sizes (0.5–1.0, 2–5 and 10 × 10 × 20 mm blocks) and a 6-month pre-weathered block. There were several distinct leaching stages observed over time associated with different phases controlling the solution chemistry: (1) free-lime (CaO) dissolution (days 0–2); (2) dicalcium silicate (Ca₂SiO₄) dissolution (days 2–14) and (3) Ca–Si–H and CaCO₃ formation and subsequent dissolution (days 14–73). Experiments with the smallest size fraction resulted in the highest Ca, Si and V concentrations, highlighting the role of surface area in controlling initial leaching. After ~2 weeks, the solution Ca/Si ratio (0.7–0.9) evolved to equal those found within a Ca–Si–H phase that replaced dicalcium silicate and free-lime phases in a 30- to 150-μm altered surface region. V release was a two-stage process; initially, V was released by dicalcium silicate dissolution, but V also isomorphically substituted for Si into the neo-formed Ca–Si–H in the alteration zone. Therefore, on longer timescales, the release of V to solution was primarily controlled by considerably slower Ca–Si–H dissolution rates, which decreased the rate of V release by an order of magnitude. Overall, the results indicate that the BOF slag leaching mechanism evolves from a situation initially dominated by rapid hydration and dissolution of primary dicalcium silicate/free-lime phases, to a slow diffusion limited process controlled by the solubility of secondary Ca–Si–H and CaCO₃ phases that replace and cover more reactive primary slag phases at particle surfaces
    corecore