32 research outputs found
Recommended from our members
Robust metastable skyrmions with tunable size in the chiral magnet FePtMo3 N
The synthesis of new materials that can host magnetic skyrmions and their thorough experimental and theoretical characterization are essential for future technological applications. The β-Mn-type compound FePtMo3N is one such novel material that belongs to the chiral space group P4132, where the antisymmetric Dzyaloshinskii-Moriya interaction is allowed due to the absence of inversion symmetry. We report the results of small-angle neutron scattering (SANS) measurements of FePtMo3N and demonstrate that its magnetic ground state is a long-period spin helix with a Curie temperature of 222 K. The magnetic field-induced redistribution of the SANS intensity showed that the helical structure transforms to a lattice of skyrmions at ∼13 mT at temperatures just below TC. Our key observation is that the skyrmion state in FePtMo3N is robust against field cooling down to the lowest temperatures. Moreover, once the metastable state is prepared by field cooling, the skyrmion lattice exists even in zero field. Furthermore, we show that the skyrmion size in FePtMo3N exhibits high sensitivity to the sample temperature and can be continuously tuned between 120 and 210 nm. This offers different prospects in the control of topological properties of chiral magnets. © 2020 authors. Published by the American Physical Society
About the relation between the quasiparticle Green's function in cuprates obtained from ARPES data and the magnetic susceptibility
Angle resolved photoemission spectroscopy (ARPES) provides a detailed view of
the renormalized band structure in cuprates and, consequently, is a key to the
self-energy and the quasiparticle Green's function. Such information gives a
clue to the comparison of ARPES with scanning tunneling microscopy, inelastic
neutron scattering (INS), and Raman scattering data. Here we touch on a
potential possibility of such a comparison with the dynamical magnetic
susceptibility measured in INS experiments. Calculations based on the
experimentally measured quasiparticle self-energies in cuprates lead to the
estimated magnetic susceptibility response with many-body effects taken into
account.Comment: Will be presented at the M2S-HTSC-VIII conference in Dresde
From tunneling to photoemission: correlating two spaces
Correlating the data measured by tunneling and photoemission spectroscopies
is a long-standing problem in condensed matter physics. The quasiparticle
interference, recently discovered in high-Tc cuprates, reveals a possibility to
solve this problem. Application of modern phase retrieval algorithms to Fourier
transformed tunneling data allows to recover the distribution of the
quasiparticle spectral weight in the reciprocal space of solids measured
directly by photoemission. This opens a direct way to unify these two powerful
techniques and may help to solve a number of problems related with space/time
inhomogeneities predicted in strongly correlated electron systems.Comment: more info at http://www.imp.kiev.ua/~kord/AC-ARPES/index.htm
Suppression of the structural phase transition and lattice softening in slightly underdoped Ba(1-x)K(x)Fe2As2 with electronic phase separation
We present x-ray powder diffraction (XRPD) and neutron diffraction
measurements on the slightly underdoped iron pnictide superconductor
Ba(1-x)K(x)Fe2As2, Tc = 32K. Below the magnetic transition temperature Tm =
70K, both techniques show an additional broadening of the nuclear Bragg peaks,
suggesting a weak structural phase transition. However, macroscopically the
system does not break its tetragonal symmetry down to 15 K. Instead, XRPD
patterns at low temperature reveal an increase of the anisotropic microstrain
proportionally in all directions. We associate this effect with the electronic
phase separation, previously observed in the same material, and with the effect
of lattice softening below the magnetic phase transition. We employ density
functional theory to evaluate the distribution of atomic positions in the
presence of dopant atoms both in the normal and magnetic states, and to
quantify the lattice softening, showing that it can account for a major part of
the observed increase of the microstrain.Comment: 7 pages, 4 figure
An ARPES view on the high-Tc problem: phonons vs spin-fluctuations
We review the search for a mediator of high-Tc superconductivity focusing on
ARPES experiment. In case of HTSC cuprates, we summarize and discuss a
consistent view of electronic interactions that provides natural explanation of
both the origin of the pseudogap state and the mechanism for high temperature
superconductivity. Within this scenario, the spin-fluctuations play a decisive
role in formation of the fermionic excitation spectrum in the normal state and
are sufficient to explain the high transition temperatures to the
superconducting state while the pseudogap phenomenon is a consequence of a
Peierls-type intrinsic instability of electronic system to formation of an
incommensurate density wave. On the other hand, a similar analysis being
applied to the iron pnictides reveals especially strong electron-phonon
coupling that suggests important role of phonons for high-Tc superconductivity
in pnictides.Comment: A summary of the ARPES part of the Research Unit FOR538,
http://for538.wmi.badw.d
Anisotropic fractal magnetic domain pattern in bulk Mn1.4PtSn
The tetragonal compound Mn1.4PtSn with D2d symmetry recently attracted attention as the first known material that hosts magnetic antiskyrmions, which differ from the skyrmions known so far by their internal structure. The latter have been found in a number of magnets with the chiral crystal structure. In previous works, the existence of antiskyrmions in Mn1.4PtSn was unambiguously demonstrated in real space by means of Lorentz transmission electron microscopy on thin-plate samples (∼100 nm thick). In the present study, we used small-angle neutron scattering and magnetic force microscopy to perform reciprocal- and real-space imaging of the magnetic texture of bulk Mn1.4PtSn single crystals at different temperatures and in applied magnetic field. We found that the magnetic texture in the bulk differs significantly from that of thin-plate samples. Instead of spin helices or an antiskyrmion lattice, we observe an anisotropic fractal magnetic pattern of closure domains in zero field above the spin-reorientation transition temperature, which transforms into a set of bubble domains in high field. Below the spin-reorientation transition temperature the strong in-plane anisotropy as well as the fractal self-affinity in zero field is gradually lost, while the formation of bubble domains in high field remains robust. The results of our study highlight the importance of dipole-dipole interactions in thin-plate samples for the stabilization of antiskyrmions and identify criteria which should guide the search for potential (anti)skyrmion host materials. Moreover, they provide consistent interpretations of the previously reported magnetotransport anomalies of the bulk crystals. © 2020 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Open access publication funded by the Max Planck Society
Recommended from our members
Magnon spectrum of the helimagnetic insulator Cu2OSeO3
Complex low-temperature-ordered states in chiral magnets are typically governed by a competition between multiple magnetic interactions. The chiral-lattice multiferroic Cu2OSeO3 became the first insulating helimagnetic material in which a long-range order of topologically stable spin vortices known as skyrmions was established. Here we employ state-of-the-art inelastic neutron scattering to comprehend the full three-dimensional spin-excitation spectrum of Cu2OSeO3 over a broad range of energies. Distinct types of high- and low-energy dispersive magnon modes separated by an extensive energy gap are observed in excellent agreement with the previously suggested microscopic theory based on a model of entangled Cu4 tetrahedra. The comparison of our neutron spectroscopy data with model spin-dynamical calculations based on these theoretical proposals enables an accurate quantitative verification of the fundamental magnetic interactions in Cu2OSeO3 that are essential for understanding its abundant low-temperature magnetically ordered phases
Recommended from our members
Momentum-resolved superconducting gap in the bulk of Ba1-xK xFe2As2 from combined ARPES and μSR measurements
Here we present a calculation of the temperature-dependent London penetration depth, λ(T), in Ba1-xKxFe 2As2 (BKFA) on the basis of the electronic band structure (Zabolotnyy et al 2009 Nature 457 569, Zabolotnyy et al 2009 Physica C 469 448) and momentum-dependent superconducting gap (Evtushinsky et al 2009 Phys. Rev. B 79 054517) extracted from angleresolved photoemission spectroscopy (ARPES) data. The results are compared to the direct measurements of λ(T) by muon spin rotation (μSR) (Khasanov et al 2009 Phys. Rev. Lett. 102 187005). The value of λ(T = 0), calculated with no adjustable parameters, equals 270 nm, while the directly measured one is 320 nm; the temperature dependence λ(T) is also easily reproduced. Such agreement between the two completely different approaches allows us to conclude that ARPES studies of BKFA are bulk-representative. Our review of the available experimental studies of the superconducting gap in the new ironbased superconductors in general allows us to state that most of them bear two nearly isotropic gaps with coupling constants 2ΔkBTc = 2.5±1.5 and 7±2
Recommended from our members
Field-Angle-Resolved Magnetic Excitations as a Probe of Hidden-Order Symmetry in CeB6
In contrast to magnetic order formed by electrons' dipolar moments, ordering phenomena associated with higher-order multipoles (quadrupoles, octupoles, etc.) are more difficult to characterize because of the limited choice of experimental probes that can distinguish different multipolar moments. The heavy-fermion compound CeB6 and its La-diluted alloys are among the best-studied realizations of the long-range-ordered multipolar phases, often referred to as "hidden order."Previously, the hidden order in phase II was identified as primary antiferroquadrupolar and field-induced octupolar order. Here, we present a combined experimental and theoretical investigation of collective excitations in phase II of CeB6. Inelastic neutron scattering (INS) in fields up to 16.5 T reveals a new high-energy mode above 14 T in addition to the low-energy magnetic excitations. The experimental dependence of their energy on the magnitude and angle of the applied magnetic field is compared to the results of a multipolar interaction model. The magnetic excitation spectrum in a rotating field is calculated within a localized approach using the pseudospin representation for the Γ8 states. We show that the rotating-field technique at fixed momentum can complement conventional INS measurements of the dispersion at a constant field and holds great promise for identifying the symmetry of multipolar order parameters and the details of intermultipolar interactions that stabilize hidden-order phases. © 2020 authors. Published by the American Physical Society
Destruction of long range magnetic order in an external magnetic field and the associated spin dynamics in Cu2GaBO5 and Cu2AlBO5 ludwigites
The quantum spin systems Cu2M BO5 M Al,Ga with the ludwigite crystal structure consist of a structurally ordered Cu2 sublattice in the form of three leg ladders, interpenetrated by a structurally disordered sublattice with a statistically random site occupation by magnetic Cu2 and nonmagnetic Ga3 or Al3 ions. A microscopic analysis based on density functional theory calculations for Cu2GaBO5 reveals a frustrated quasi two dimensional spin model featuring five inequivalent antiferromagnetic exchanges. A broad low temperature 11B nuclear magnetic resonance points to a considerable spin disorder in the system. In zero magnetic field, antiferromagnetic order sets in below TN approximation 4.1 K and 2.4 K for the Ga and Al compounds, respectively. From neutron diffraction, we find that the magnetic propagation vector in Cu2GaBO5 is commensurate and lies on the Brillouin zone boundary in the H0L plane, qm 0.45, 0, 0.7 , corresponding to a complex noncollinear long range ordered structure with a large magnetic unit cell. Muon spin relaxation is monotonic, consisting of a fast static component typical for complex noncollinear spin systems and a slow dynamic component originating from the relaxation on low energy spin fluctuations. Gapless spin dynamics in the form of a diffuse quasielastic peak is also evidenced by inelastic neutron scattering. Most remarkably, application of a magnetic field above 1 T destroys the static long range order, which is manifested in the gradual broadening of the magnetic Bragg peaks. We argue that such a crossover from a magnetically long range ordered state to a spin glass regime may result from orphan spins on the structurally disordered magnetic sublattice, which are polarized in magnetic field and thus act as a tuning knob for field controlled magnetic disorde