109 research outputs found

    Clinical review: Prothrombin complex concentrates - evaluation of safety and thrombogenicity (vol 15, pg 201, 2011)

    Get PDF
    Prothrombin complex concentrates (PCCs) are used mainly for emergency reversal of vitamin K antagonist therapy. Historically, the major drawback with PCCs has been the risk of thrombotic complications. The aims of the present review are to examine thrombotic complications reported with PCCs, and to compare the safety of PCCs with human fresh frozen plasma. The risk of thrombotic complications may be increased by underlying disease, high or frequent PCC dosing, and poorly balanced PCC constituents. The causes of PCC thrombogenicity remain uncertain but accumulating evidence indicates the importance of factor II (prothrombin). With the inclusion of coagulation inhibitors and other manufacturing improvements, today's PCCs may be considered safer than earlier products. PCCs may be considered preferable to fresh frozen plasma for emergency anticoagulant reversal, and this is reflected in the latest British and American guidelines. Care should be taken to avoid excessive substitution with prothrombin, however, and accurate monitoring of patients' coagulation status may allow thrombotic risk to be reduced. The risk of a thrombotic complication due to treatment with PCCs should be weighed against the need for rapid and effective correction of coagulopathy

    Room temperature femtosecond optical parametric generation in MgO-doped stoichiometric LiTaO3

    Get PDF
    We demonstrate room temperature femtosecond optical parametric generation with high average output power in periodically poled MgO-doped stoichiometric LiTaO3. Direct pumping with 725-fs pulses from a passively mode-locked thin disk laser at 1030nm resulted in stable 1.5W average signal power at 1484nm at the full laser repetition rate of 59MHz. With this demonstration we achieved a significant simplification of our recently presented red-green-blue laser source because no temperature stabilization of any nonlinear crystal is require

    Patient satisfaction with anaesthesia care: development of a psychometric questionnaire and benchmarking among six hospitals in Switzerland and Austria†‡

    Get PDF
    Background. We describe the development and comparison of a psychometric questionnaire on patient satisfaction with anaesthesia care among six hospitals. Methods. We used a rigorous protocol: generation of items, construction of the pilot questionnaire, pilot study, statistical analysis (construct validity, factor analysis, reliability analysis), compilation of the final questionnaire, main study, repeated analysis of construct validity and reliability. We compared the mean total problem score and the scores for the dimensions: ‘Information/Involvement in decision‐making', and ‘Continuity of personal care by anaesthetist'. The influence of potential confounding variables was tested (multiple linear regression). Results. The average problem score from all hospitals was 18.6%. Most problems are mentioned in the dimensions ‘Information/Involvement in decision‐making' (mean problem score: 30.9%) and ‘Continuity of personal care by anaesthetist' (mean problem score: 32.2%). The overall assessment of the quality of anaesthesia care was good to excellent in 98.7% of cases. The most important dimension was ‘Information/Involvement in decision‐making'. The mean total problem score was significantly lower for two hospitals than the total mean for all hospitals (significantly higher at two hospitals) (P<0.05). Amongst the confounding variables considered, age, sex, subjective state of health, type of anaesthesia and level of education had an influence on the total problem score and the two dimensions mentioned. There were only marginal differences with and without the influence of the confounding variables for the different hospitals. Conclusions. A psychometric questionnaire on patient satisfaction with anaesthesia care must cover areas such as patient information, involvement in decision‐making, and contact with the anaesthetist. The assessment using summed scores for dimensions is more informative than a global summed rating. There were significant differences between hospitals. Moreover, the high problem scores indicate a great potential for improvement at all hospitals. Br J Anaesth 2002; 89: 863-7

    Safety profile of enhanced thromboprophylaxis strategies for critically ill COVID-19 patients during the first wave of the pandemic: observational report from 28 European intensive care units

    Get PDF
    Introduction: Critical illness from SARS-CoV-2 infection (COVID-19) is associated with a high burden of pulmonary embolism (PE) and thromboembolic events despite standard thromboprophylaxis. Available guidance is discordant, ranging from standard care to the use of therapeutic anticoagulation for enhanced thromboprophylaxis (ET). Local ET protocols have been empirically determined and are generally intermediate between standard prophylaxis and full anticoagulation. Concerns have been raised in regard to the potential risk of haemorrhage associated with therapeutic anticoagulation. This report describes the prevalence and safety of ET strategies in European Intensive Care Unit (ICUs) and their association with outcomes during the first wave of the COVID pandemic, with particular focus on haemorrhagic complications and ICU mortality. Methods: Retrospective, observational, multi-centre study including adult critically ill COVID-19 patients. Anonymised data included demographics, clinical characteristics, thromboprophylaxis and/or anticoagulation treatment. Critical haemorrhage was defined as intracranial haemorrhage or bleeding requiring red blood cells transfusion. Survival was collected at ICU discharge. A multivariable mixed effects generalised linear model analysis matched for the propensity for receiving ET was constructed for both ICU mortality and critical haemorrhage. Results: A total of 852 (79% male, age 66 [37\u201385] years) patients were included from 28 ICUs. Median body mass index and ICU length of stay were 27.7 (25.1\u201330.7) Kg/m2 and 13&nbsp;(7\u201322) days, respectively. Thromboembolic events were reported in 146 patients (17.1%), of those 78 (9.2%) were PE. ICU mortality occurred in 335/852 (39.3%) patients. ET was used in 274 (32.1%) patients, and it was independently associated with significant reduction in ICU mortality (log odds = 0.64 [95% CIs 0.18\u20131.1; p = 0.0069]) but not an increased risk of critical haemorrhage (log odds = 0.187 [95%CI 12 0.591 to 12 0.964; p = 0.64]). Conclusions: In a cohort of critically ill patients with a high prevalence of thromboembolic events, ET was associated with reduced ICU mortality without an increased burden of haemorrhagic complications. This study suggests ET strategies are safe and associated with favourable outcomes. Whilst full anticoagulation has been questioned for prophylaxis in these patients, our results suggest that there may nevertheless be a role for enhanced / intermediate levels of prophylaxis. Clinical trials investigating causal relationship between intermediate thromboprophylaxis and clinical outcomes are urgently needed

    All-sky search for periodic gravitational waves in LIGO S4 data

    Get PDF
    We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50-1000 Hz and with the frequency's time derivative in the range -1.0E-8 Hz/s to zero. Data from the fourth LIGO science run (S4) have been used in this search. Three different semi-coherent methods of transforming and summing strain power from Short Fourier Transforms (SFTs) of the calibrated data have been used. The first, known as "StackSlide", averages normalized power from each SFT. A "weighted Hough" scheme is also developed and used, and which also allows for a multi-interferometer search. The third method, known as "PowerFlux", is a variant of the StackSlide method in which the power is weighted before summing. In both the weighted Hough and PowerFlux methods, the weights are chosen according to the noise and detector antenna-pattern to maximize the signal-to-noise ratio. The respective advantages and disadvantages of these methods are discussed. Observing no evidence of periodic gravitational radiation, we report upper limits; we interpret these as limits on this radiation from isolated rotating neutron stars. The best population-based upper limit with 95% confidence on the gravitational-wave strain amplitude, found for simulated sources distributed isotropically across the sky and with isotropically distributed spin-axes, is 4.28E-24 (near 140 Hz). Strict upper limits are also obtained for small patches on the sky for best-case and worst-case inclinations of the spin axes.Comment: 39 pages, 41 figures An error was found in the computation of the C parameter defined in equation 44 which led to its overestimate by 2^(1/4). The correct values for the multi-interferometer, H1 and L1 analyses are 9.2, 9.7, and 9.3, respectively. Figure 32 has been updated accordingly. None of the upper limits presented in the paper were affecte

    Search for gravitational waves from binary inspirals in S3 and S4 LIGO data

    Get PDF
    We report on a search for gravitational waves from the coalescence of compact binaries during the third and fourth LIGO science runs. The search focused on gravitational waves generated during the inspiral phase of the binary evolution. In our analysis, we considered three categories of compact binary systems, ordered by mass: (i) primordial black hole binaries with masses in the range 0.35 M(sun) < m1, m2 < 1.0 M(sun), (ii) binary neutron stars with masses in the range 1.0 M(sun) < m1, m2 < 3.0 M(sun), and (iii) binary black holes with masses in the range 3.0 M(sun)< m1, m2 < m_(max) with the additional constraint m1+ m2 < m_(max), where m_(max) was set to 40.0 M(sun) and 80.0 M(sun) in the third and fourth science runs, respectively. Although the detectors could probe to distances as far as tens of Mpc, no gravitational-wave signals were identified in the 1364 hours of data we analyzed. Assuming a binary population with a Gaussian distribution around 0.75-0.75 M(sun), 1.4-1.4 M(sun), and 5.0-5.0 M(sun), we derived 90%-confidence upper limit rates of 4.9 yr^(-1) L10^(-1) for primordial black hole binaries, 1.2 yr^(-1) L10^(-1) for binary neutron stars, and 0.5 yr^(-1) L10^(-1) for stellar mass binary black holes, where L10 is 10^(10) times the blue light luminosity of the Sun.Comment: 12 pages, 11 figure

    Search for Gravitational Waves Associated with 39 Gamma-Ray Bursts Using Data from the Second, Third, and Fourth LIGO Runs

    Get PDF
    We present the results of a search for short-duration gravitational-wave bursts associated with 39 gamma-ray bursts (GRBs) detected by gamma-ray satellite experiments during LIGO's S2, S3, and S4 science runs. The search involves calculating the crosscorrelation between two interferometer data streams surrounding the GRB trigger time. We search for associated gravitational radiation from single GRBs, and also apply statistical tests to search for a gravitational-wave signature associated with the whole sample. For the sample examined, we find no evidence for the association of gravitational radiation with GRBs, either on a single-GRB basis or on a statistical basis. Simulating gravitational-wave bursts with sine-gaussian waveforms, we set upper limits on the root-sum-square of the gravitational-wave strain amplitude of such waveforms at the times of the GRB triggers. We also demonstrate how a sample of several GRBs can be used collectively to set constraints on population models. The small number of GRBs and the significant change in sensitivity of the detectors over the three runs, however, limits the usefulness of a population study for the S2, S3, and S4 runs. Finally, we discuss prospects for the search sensitivity for the ongoing S5 run, and beyond for the next generation of detectors.Comment: 24 pages, 10 figures, 14 tables; minor changes to text and Fig. 2; accepted by Phys. Rev.

    A Joint Search for Gravitational Wave Bursts with AURIGA and LIGO

    Get PDF
    The first simultaneous operation of the AURIGA detector and the LIGO observatory was an opportunity to explore real data, joint analysis methods between two very different types of gravitational wave detectors: resonant bars and interferometers. This paper describes a coincident gravitational wave burst search, where data from the LIGO interferometers are cross-correlated at the time of AURIGA candidate events to identify coherent transients. The analysis pipeline is tuned with two thresholds, on the signal-to-noise ratio of AURIGA candidate events and on the significance of the cross-correlation test in LIGO. The false alarm rate is estimated by introducing time shifts between data sets and the network detection efficiency is measured with simulated signals with power in the narrower AURIGA band. In the absence of a detection, we discuss how to set an upper limit on the rate of gravitational waves and to interpret it according to different source models. Due to the short amount of analyzed data and to the high rate of non-Gaussian transients in the detectors noise at the time, the relevance of this study is methodological: this was the first joint search for gravitational wave bursts among detectors with such different spectral sensitivity and the first opportunity for the resonant and interferometric communities to unify languages and techniques in the pursuit of their common goal.Comment: 18 pages, IOP, 12 EPS figure

    Search for gravitational-wave bursts in LIGO data from the fourth science run

    Get PDF
    The fourth science run of the LIGO and GEO 600 gravitational-wave detectors, carried out in early 2005, collected data with significantly lower noise than previous science runs. We report on a search for short-duration gravitational-wave bursts with arbitrary waveform in the 64-1600 Hz frequency range appearing in all three LIGO interferometers. Signal consistency tests, data quality cuts, and auxiliary-channel vetoes are applied to reduce the rate of spurious triggers. No gravitational-wave signals are detected in 15.5 days of live observation time; we set a frequentist upper limit of 0.15 per day (at 90% confidence level) on the rate of bursts with large enough amplitudes to be detected reliably. The amplitude sensitivity of the search, characterized using Monte Carlo simulations, is several times better than that of previous searches. We also provide rough estimates of the distances at which representative supernova and binary black hole merger signals could be detected with 50% efficiency by this analysis.Comment: Corrected amplitude sensitivities (7% change on average); 30 pages, submitted to Classical and Quantum Gravit

    Searching for a Stochastic Background of Gravitational Waves with LIGO

    Get PDF
    The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed the fourth science run, S4, with significantly improved interferometer sensitivities with respect to previous runs. Using data acquired during this science run, we place a limit on the amplitude of a stochastic background of gravitational waves. For a frequency independent spectrum, the new limit is ΩGW<6.5×10−5\Omega_{\rm GW} < 6.5 \times 10^{-5}. This is currently the most sensitive result in the frequency range 51-150 Hz, with a factor of 13 improvement over the previous LIGO result. We discuss complementarity of the new result with other constraints on a stochastic background of gravitational waves, and we investigate implications of the new result for different models of this background.Comment: 37 pages, 16 figure
    • …
    corecore