109 research outputs found

    An all-optical trap for a gram-scale mirror

    Get PDF
    We report on a stable optical trap suitable for a macroscopic mirror, wherein the dynamics of the mirror are fully dominated by radiation pressure. The technique employs two frequency-offset laser fields to simultaneously create a stiff optical restoring force and a viscous optical damping force. We show how these forces may be used to optically trap a free mass without introducing thermal noise; and we demonstrate the technique experimentally with a 1 gram mirror. The observed optical spring has an inferred Young's modulus of 1.2 TPa, 20% stiffer than diamond. The trap is intrinsically cold and reaches an effective temperature of 0.8 K, limited by technical noise in our apparatus.Comment: Major revision. Replacement is version that appears in Phy. Rev. Lett. 98, 150802 (2007

    Thromboelastometry (ROTEM®) in children: age-related reference ranges and correlations with standard coagulation tests

    Get PDF
    Background The small sample volume needed and the prompt availability of results make viscoelastic methods like rotational thromboelastometry (ROTEM®) attractive for monitoring coagulation in small children. However, data on reference ranges for ROTEM® parameters in children are scarce. Methods Four hundred and seven children (ASA I and II) undergoing elective surgery were recruited for this prospective, two-centre, observational study. Subjects were grouped as follows: 0-3, 4-12, 13-24 months, 2-5, 6-10, and 11-16 yr. Study objectives were to establish age-dependent reference ranges for ROTEM® assays, analyse age dependence of parameters, and compare ROTEM® data with standard coagulation tests. Results Data from 359 subjects remained for final analysis. Except for extrinsically activated clot strength and lysis, parameters for ROTEM® assays were significantly different among all age groups. The most striking finding was that subjects aged 0-3 months exhibited accelerated initiation (ExTEM coagulation time: median 48 s, Q1-Q3 38-65 s; P=0.001) and propagation of coagulation (α angle: median 78o, Q1-Q3 69-84o; P<0.001) and maximum clot firmness (median 62 mm, Q1-Q3 54-74 mm), although standard plasma coagulation test results were prolonged (prothrombin time: median 13.2 s, Q1-Q3 12.6-13.6 s; activated partial thromboplastin time: median 42 s, Q1-Q3 40-46 s). Lysis indices of <85% were observed in nearly one-third of all children without increased bleeding tendency. Platelet count and fibrinogen levels correlated significantly with clot strength, and fibrinogen levels correlated with fibrin polymerization. Conclusions Reference ranges for ROTEM® assays were determined for all paediatric age groups. These values will be helpful when monitoring paediatric patients and in studies of perioperative coagulation in childre

    Room temperature femtosecond optical parametric generation in MgO-doped stoichiometric LiTaO3

    Get PDF
    We demonstrate room temperature femtosecond optical parametric generation with high average output power in periodically poled MgO-doped stoichiometric LiTaO3. Direct pumping with 725-fs pulses from a passively mode-locked thin disk laser at 1030nm resulted in stable 1.5W average signal power at 1484nm at the full laser repetition rate of 59MHz. With this demonstration we achieved a significant simplification of our recently presented red-green-blue laser source because no temperature stabilization of any nonlinear crystal is require

    Search for Gravitational Waves Associated with 39 Gamma-Ray Bursts Using Data from the Second, Third, and Fourth LIGO Runs

    Get PDF
    We present the results of a search for short-duration gravitational-wave bursts associated with 39 gamma-ray bursts (GRBs) detected by gamma-ray satellite experiments during LIGO's S2, S3, and S4 science runs. The search involves calculating the crosscorrelation between two interferometer data streams surrounding the GRB trigger time. We search for associated gravitational radiation from single GRBs, and also apply statistical tests to search for a gravitational-wave signature associated with the whole sample. For the sample examined, we find no evidence for the association of gravitational radiation with GRBs, either on a single-GRB basis or on a statistical basis. Simulating gravitational-wave bursts with sine-gaussian waveforms, we set upper limits on the root-sum-square of the gravitational-wave strain amplitude of such waveforms at the times of the GRB triggers. We also demonstrate how a sample of several GRBs can be used collectively to set constraints on population models. The small number of GRBs and the significant change in sensitivity of the detectors over the three runs, however, limits the usefulness of a population study for the S2, S3, and S4 runs. Finally, we discuss prospects for the search sensitivity for the ongoing S5 run, and beyond for the next generation of detectors.Comment: 24 pages, 10 figures, 14 tables; minor changes to text and Fig. 2; accepted by Phys. Rev.

    Search for gravitational waves from binary inspirals in S3 and S4 LIGO data

    Get PDF
    We report on a search for gravitational waves from the coalescence of compact binaries during the third and fourth LIGO science runs. The search focused on gravitational waves generated during the inspiral phase of the binary evolution. In our analysis, we considered three categories of compact binary systems, ordered by mass: (i) primordial black hole binaries with masses in the range 0.35 M(sun) < m1, m2 < 1.0 M(sun), (ii) binary neutron stars with masses in the range 1.0 M(sun) < m1, m2 < 3.0 M(sun), and (iii) binary black holes with masses in the range 3.0 M(sun)< m1, m2 < m_(max) with the additional constraint m1+ m2 < m_(max), where m_(max) was set to 40.0 M(sun) and 80.0 M(sun) in the third and fourth science runs, respectively. Although the detectors could probe to distances as far as tens of Mpc, no gravitational-wave signals were identified in the 1364 hours of data we analyzed. Assuming a binary population with a Gaussian distribution around 0.75-0.75 M(sun), 1.4-1.4 M(sun), and 5.0-5.0 M(sun), we derived 90%-confidence upper limit rates of 4.9 yr^(-1) L10^(-1) for primordial black hole binaries, 1.2 yr^(-1) L10^(-1) for binary neutron stars, and 0.5 yr^(-1) L10^(-1) for stellar mass binary black holes, where L10 is 10^(10) times the blue light luminosity of the Sun.Comment: 12 pages, 11 figure

    All-sky search for periodic gravitational waves in LIGO S4 data

    Get PDF
    We report on an all-sky search with the LIGO detectors for periodic gravitational waves in the frequency range 50-1000 Hz and with the frequency's time derivative in the range -1.0E-8 Hz/s to zero. Data from the fourth LIGO science run (S4) have been used in this search. Three different semi-coherent methods of transforming and summing strain power from Short Fourier Transforms (SFTs) of the calibrated data have been used. The first, known as "StackSlide", averages normalized power from each SFT. A "weighted Hough" scheme is also developed and used, and which also allows for a multi-interferometer search. The third method, known as "PowerFlux", is a variant of the StackSlide method in which the power is weighted before summing. In both the weighted Hough and PowerFlux methods, the weights are chosen according to the noise and detector antenna-pattern to maximize the signal-to-noise ratio. The respective advantages and disadvantages of these methods are discussed. Observing no evidence of periodic gravitational radiation, we report upper limits; we interpret these as limits on this radiation from isolated rotating neutron stars. The best population-based upper limit with 95% confidence on the gravitational-wave strain amplitude, found for simulated sources distributed isotropically across the sky and with isotropically distributed spin-axes, is 4.28E-24 (near 140 Hz). Strict upper limits are also obtained for small patches on the sky for best-case and worst-case inclinations of the spin axes.Comment: 39 pages, 41 figures An error was found in the computation of the C parameter defined in equation 44 which led to its overestimate by 2^(1/4). The correct values for the multi-interferometer, H1 and L1 analyses are 9.2, 9.7, and 9.3, respectively. Figure 32 has been updated accordingly. None of the upper limits presented in the paper were affecte

    A Joint Search for Gravitational Wave Bursts with AURIGA and LIGO

    Get PDF
    The first simultaneous operation of the AURIGA detector and the LIGO observatory was an opportunity to explore real data, joint analysis methods between two very different types of gravitational wave detectors: resonant bars and interferometers. This paper describes a coincident gravitational wave burst search, where data from the LIGO interferometers are cross-correlated at the time of AURIGA candidate events to identify coherent transients. The analysis pipeline is tuned with two thresholds, on the signal-to-noise ratio of AURIGA candidate events and on the significance of the cross-correlation test in LIGO. The false alarm rate is estimated by introducing time shifts between data sets and the network detection efficiency is measured with simulated signals with power in the narrower AURIGA band. In the absence of a detection, we discuss how to set an upper limit on the rate of gravitational waves and to interpret it according to different source models. Due to the short amount of analyzed data and to the high rate of non-Gaussian transients in the detectors noise at the time, the relevance of this study is methodological: this was the first joint search for gravitational wave bursts among detectors with such different spectral sensitivity and the first opportunity for the resonant and interferometric communities to unify languages and techniques in the pursuit of their common goal.Comment: 18 pages, IOP, 12 EPS figure

    Search for gravitational-wave bursts in LIGO data from the fourth science run

    Get PDF
    The fourth science run of the LIGO and GEO 600 gravitational-wave detectors, carried out in early 2005, collected data with significantly lower noise than previous science runs. We report on a search for short-duration gravitational-wave bursts with arbitrary waveform in the 64-1600 Hz frequency range appearing in all three LIGO interferometers. Signal consistency tests, data quality cuts, and auxiliary-channel vetoes are applied to reduce the rate of spurious triggers. No gravitational-wave signals are detected in 15.5 days of live observation time; we set a frequentist upper limit of 0.15 per day (at 90% confidence level) on the rate of bursts with large enough amplitudes to be detected reliably. The amplitude sensitivity of the search, characterized using Monte Carlo simulations, is several times better than that of previous searches. We also provide rough estimates of the distances at which representative supernova and binary black hole merger signals could be detected with 50% efficiency by this analysis.Comment: Corrected amplitude sensitivities (7% change on average); 30 pages, submitted to Classical and Quantum Gravit

    Safety profile of enhanced thromboprophylaxis strategies for critically ill COVID-19 patients during the first wave of the pandemic: observational report from 28 European intensive care units

    Get PDF
    Introduction: Critical illness from SARS-CoV-2 infection (COVID-19) is associated with a high burden of pulmonary embolism (PE) and thromboembolic events despite standard thromboprophylaxis. Available guidance is discordant, ranging from standard care to the use of therapeutic anticoagulation for enhanced thromboprophylaxis (ET). Local ET protocols have been empirically determined and are generally intermediate between standard prophylaxis and full anticoagulation. Concerns have been raised in regard to the potential risk of haemorrhage associated with therapeutic anticoagulation. This report describes the prevalence and safety of ET strategies in European Intensive Care Unit (ICUs) and their association with outcomes during the first wave of the COVID pandemic, with particular focus on haemorrhagic complications and ICU mortality. Methods: Retrospective, observational, multi-centre study including adult critically ill COVID-19 patients. Anonymised data included demographics, clinical characteristics, thromboprophylaxis and/or anticoagulation treatment. Critical haemorrhage was defined as intracranial haemorrhage or bleeding requiring red blood cells transfusion. Survival was collected at ICU discharge. A multivariable mixed effects generalised linear model analysis matched for the propensity for receiving ET was constructed for both ICU mortality and critical haemorrhage. Results: A total of 852 (79% male, age 66 [37\u201385] years) patients were included from 28 ICUs. Median body mass index and ICU length of stay were 27.7 (25.1\u201330.7) Kg/m2 and 13&nbsp;(7\u201322) days, respectively. Thromboembolic events were reported in 146 patients (17.1%), of those 78 (9.2%) were PE. ICU mortality occurred in 335/852 (39.3%) patients. ET was used in 274 (32.1%) patients, and it was independently associated with significant reduction in ICU mortality (log odds = 0.64 [95% CIs 0.18\u20131.1; p = 0.0069]) but not an increased risk of critical haemorrhage (log odds = 0.187 [95%CI 12 0.591 to 12 0.964; p = 0.64]). Conclusions: In a cohort of critically ill patients with a high prevalence of thromboembolic events, ET was associated with reduced ICU mortality without an increased burden of haemorrhagic complications. This study suggests ET strategies are safe and associated with favourable outcomes. Whilst full anticoagulation has been questioned for prophylaxis in these patients, our results suggest that there may nevertheless be a role for enhanced / intermediate levels of prophylaxis. Clinical trials investigating causal relationship between intermediate thromboprophylaxis and clinical outcomes are urgently needed
    corecore