37 research outputs found

    Tracking arboviruses, their transmission vectors and potential hosts by nanopore sequencing of mosquitoes

    Get PDF
    The risk to human health from mosquito-borne viruses such as dengue, chikungunya and yellow fever is increasing due to increased human expansion, deforestation and climate change. To anticipate and predict the spread and transmission of mosquito-borne viruses, a better understanding of the transmission cycle in mosquito populations is needed. We present a pathogen-agnostic combined sequencing protocol for identifying vectors, viral pathogens and their hosts or reservoirs using portable Oxford Nanopore sequencing. Using mosquitoes collected in São Paulo, Brazil, we extracted RNA for virus identification and DNA for blood meal and mosquito identification. Mosquitoes and blood meals were identified by comparing cytochrome c oxidase I (COI) sequences against a curated Barcode of Life Data System (BOLD). Viruses were identified using the SMART-9N protocol, which allows amplified DNA to be prepared with native barcoding for nanopore sequencing. Kraken 2 was employed to detect viral pathogens and Minimap2 and BOLD identified the contents of the blood meal. Due to the high similarity of some species, mosquito identification was conducted using blast after generation of consensus COI sequences using RACON polishing. This protocol can simultaneously uncover viral diversity, mosquito species and mosquito feeding habits. It also has the potential to increase understanding of mosquito genetic diversity and transmission dynamics of zoonotic mosquito-borne viruses.</p

    Zika virus infection among symptomatic patients from two healthcare centers in Sao Paulo State, Brazil: prevalence, clinical characteristics, viral detection in body fluids and serodynamics

    Get PDF
    Zika virus (ZIKV) clinical presentation and frequency/duration of shedding need further clarification. Symptomatic ZIKV-infected individuals identified in two hospitals in Sao Paulo State, Brazil, were investigated regarding clinical characteristics, shedding in body fluids, and serodynamics. Ninety-four of 235 symptomatic patients (Site A: 58%; Site B: 16%) had Real-Time PCR-confirmed ZIKV infection; fever, headache and gastrointestinal symptoms were less frequent, and rash was more frequent compared to ZIKV-negative patients. Real-Time PCR in serum had worse performance compared to plasma, while urine had the highest sensitivity. Shedding in genital fluids and saliva was rare. IgM positivity was the highest &lt;14 days after the symptoms onset (86%), decreasing &gt;28 days (24%); IgG positivity increased &gt;14 days (96%) remaining positive in 94% of patients &gt;28 days. ZIKV prevalence varied importantly in two neighboring cities during the same transmission season. Urine Real-Time PCR can improve diagnostic sensitivity; serum testing is less useful. Accurate serological tests are needed to improve diagnosis and surveillance

    Zika virus infection among symptomatic patients from two healthcare centers in Sao Paulo State, Brazil: prevalence, clinical characteristics, viral detection in body fluids and serodynamics.

    Get PDF
    Zika virus (ZIKV) clinical presentation and frequency/duration of shedding need further clarification. Symptomatic ZIKV-infected individuals identified in two hospitals in Sao Paulo State, Brazil, were investigated regarding clinical characteristics, shedding in body fluids, and serodynamics. Ninety-four of 235 symptomatic patients (Site A: 58%; Site B: 16%) had Real-Time PCR-confirmed ZIKV infection; fever, headache and gastrointestinal symptoms were less frequent, and rash was more frequent compared to ZIKV-negative patients. Real-Time PCR in serum had worse performance compared to plasma, while urine had the highest sensitivity. Shedding in genital fluids and saliva was rare. IgM positivity was the highest 28 days (24%); IgG positivity increased >14 days (96%) remaining positive in 94% of patients >28 days. ZIKV prevalence varied importantly in two neighboring cities during the same transmission season. Urine Real-Time PCR can improve diagnostic sensitivity; serum testing is less useful. Accurate serological tests are needed to improve diagnosis and surveillance

    CRISPR/Cas9 editing in human pluripotent stem cell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy

    Get PDF
    Aims: Sarcomeric gene mutations frequently underlie hypertrophic cardiomyopathy (HCM), a prevalent and complex condition leading to left ventricle thickening and heart dysfunction. We evaluated isogenic genome-edited human pluripotent stem cell-cardiomyocytes (hPSC-CM) for their validity to model, and add clarity to, HCM. Methods and results: CRISPR/Cas9 editing produced 11 variants of the HCM-causing mutation c.C9123T-MYH7 [(p.R453C-?-myosin heavy chain (MHC)] in 3 independent hPSC lines. Isogenic sets were differentiated to hPSC-CMs for high-throughput, non-subjective molecular and functional assessment using 12 approaches in 2D monolayers and/or 3D engineered heart tissues. Although immature, edited hPSC-CMs exhibited the main hallmarks of HCM (hypertrophy, multi-nucleation, hypertrophic marker expression, sarcomeric disarray). Functional evaluation supported the energy depletion model due to higher metabolic respiration activity, accompanied by abnormalities in calcium handling, arrhythmias, and contraction force. Partial phenotypic rescue was achieved with ranolazine but not omecamtiv mecarbil, while RNAseq highlighted potentially novel molecular targets. Conclusion: Our holistic and comprehensive approach showed that energy depletion affected core cardiomyocyte functionality. The engineered R453C-?MHC-mutation triggered compensatory responses in hPSC-CMs, causing increased ATP production and ?MHC to energy-efficient ?MHC switching. We showed that pharmacological rescue of arrhythmias was possible, while MHY7: MYH6 and mutant: wild-type MYH7 ratios may be diagnostic, and previously undescribed lncRNAs and gene modifiers are suggestive of new mechanisms

    Multiplex qPCR Discriminates Variants of Concern to Enhance Global Surveillance of SARS-CoV-2

    Get PDF
    With the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants that may increase transmissibility and/or cause escape from immune responses, there is an urgent need for the targeted surveillance of circulating lineages. It was found that the B.1.1.7 (also 501Y.V1) variant, first detected in the United Kingdom, could be serendipitously detected by the Thermo Fisher TaqPath COVID-19 PCR assay because a key deletion in these viruses, spike Δ69-70, would cause a spike gene target failure (SGTF) result. However, a SGTF result is not definitive for B.1.1.7, and this assay cannot detect other variants of concern (VOC) that lack spike Δ69-70, such as B.1.351 (also 501Y.V2), detected in South Africa, and P.1 (also 501Y.V3), recently detected in Brazil. We identified a deletion in the ORF1a gene (ORF1a Δ3675-3677) in all 3 variants, which has not yet been widely detected in other SARS-CoV-2 lineages. Using ORF1a Δ3675-3677 as the primary target and spike Δ69-70 to differentiate, we designed and validated an open-source PCR assay to detect SARS-CoV-2 VOC. Our assay can be rapidly deployed in laboratories around the world to enhance surveillance for the local emergence and spread of B.1.1.7, B.1.351, and P.1

    Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil

    Get PDF
    Cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Manaus, Brazil, resurged in late 2020 despite previously high levels of infection. Genome sequencing of viruses sampled in Manaus between November 2020 and January 2021 revealed the emergence and circulation of a novel SARS-CoV-2 variant of concern. Lineage P.1 acquired 17 mutations, including a trio in the spike protein (K417T, E484K, and N501Y) associated with increased binding to the human ACE2 (angiotensin-converting enzyme 2) receptor. Molecular clock analysis shows that P.1 emergence occurred around mid-November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.7- to 2.4-fold more transmissible and that previous (non-P.1) infection provides 54 to 79% of the protection against infection with P.1 that it provides against non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness

    Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples

    Get PDF
    Genome sequencing has become a powerful tool for studying emerging infectious diseases; however, genome sequencing directly from clinical samples (i.e., without isolation and culture) remains challenging for viruses such as Zika, for which metagenomic sequencing methods may generate insufficient numbers of viral reads. Here we present a protocol for generating coding-sequence-complete genomes, comprising an online primer design tool, a novel multiplex PCR enrichment protocol, optimized library preparation methods for the portable MinION sequencer (Oxford Nanopore Technologies) and the Illumina range of instruments, and a bioinformatics pipeline for generating consensus sequences. The MinION protocol does not require an Internet connection for analysis, making it suitable for field applications with limited connectivity. Our method relies on multiplex PCR for targeted enrichment of viral genomes from samples containing as few as 50 genome copies per reaction. Viral consensus sequences can be achieved in 1-2 d by starting with clinical samples and following a simple laboratory workflow. This method has been successfully used by several groups studying Zika virus evolution and is facilitating an understanding of the spread of the virus in the Americas. The protocol can be used to sequence other viral genomes using the online Primal Scheme primer designer software. It is suitable for sequencing either RNA or DNA viruses in the field during outbreaks or as an inexpensive, convenient method for use in the lab
    corecore