28 research outputs found

    Cued to act on impulse: more impulsive choice and risky decision making by women susceptible to overeating after exposure to food stimuli

    Get PDF
    There is increasing evidence that individual differences in tendency to overeat relate to impulsivity, possibly by increasing reactivity to food-related cues in the environment. This study tested whether acute exposure to food cues enhanced impulsive and risky responses in women classified on tendency to overeat, indexed by scores on the three factor eating questionnaire disinhibition (TFEQ-D), restraint (TFEQ-R) and hunger scales. Ninety six healthy women completed two measures of impulsive responding (delayed discounting, DDT and a Go No-Go, GNG, task) and a measure of risky decision making (the balloon analogue risk task, BART) as well as questionnairemeasures of impulsive behaviour either after looking at a series of pictures of food or visually matched controls. Impulsivity (DDT) and risk-taking (BART) were both positively associated with TFEQ-D scores, but in both cases this effect was exacerbated by prior exposure to food cues. No effects of restraint were found. TFEQ-D scores were also related tomore commission errors on the GNG, while restrained women were slower on the GNG, but neither effect was modified by cue exposure. Overall these data suggest that exposure to food cues act to enhance general impulsive responding in women at risk of overeating and tentatively suggest an important interaction between tendency for impulsive decision making and food cues thatmay help explain a key underlying risk factor for overeating

    Excessive Islet NO Generation in Type 2 Diabetic GK Rats Coincides with Abnormal Hormone Secretion and Is Counteracted by GLP-1

    Get PDF
    BACKGROUND: A distinctive feature of type 2 diabetes is inability of insulin-secreting beta-cells to properly respond to elevated glucose eventually leading to beta-cell failure. We have hypothesized that an abnormally increased NO production in the pancreatic islets might be an important factor in the pathogenesis of beta-cell dysfunction. PRINCIPAL FINDINGS: We show now that islets of type 2 spontaneous diabetes in GK rats display excessive NO generation associated with abnormal iNOS expression in insulin and glucagon cells, increased ncNOS activity, impaired glucose-stimulated insulin release, glucagon hypersecretion, and impaired glucose-induced glucagon suppression. Pharmacological blockade of islet NO production by the NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) greatly improved hormone secretion from GK islets suggesting islet NOS activity being an important target to inactivate for amelioration of islet cell function. The incretin hormone GLP-1, which is used in clinical practice suppressed iNOS and ncNOS expression and activity with almost full restoration of insulin release and partial restoration of glucagon release. GLP-1 suppression of iNOS expression was reversed by PKA inhibition but unaffected by the proteasome inhibitor MG132. Injection of glucose plus GLP-1 in the diabetic rats showed that GLP-1 amplified the insulin response but induced a transient increase and then a poor depression of glucagon. CONCLUSION: The results suggest that abnormally increased NO production within islet cells is a significant player in the pathogenesis of type 2 diabetes being counteracted by GLP-1 through PKA-dependent, nonproteasomal mechanisms

    Impact of luxS and Suppressor Mutations on the Gastrointestinal Transit of Lactobacillus rhamnosus GGâ–¿

    No full text
    It is generally believed that probiotic bacteria need to survive gastrointestinal transit to exert a health-promoting effect. In this study, a genuine luxS mutant and a luxS mutant containing unknown suppressor mutations of the probiotic strain Lactobacillus rhamnosus GG were compared to the wild type for survival and persistence in the murine gastrointestinal tract. The LuxS enzyme, catalyzing the production of the autoinducer-2 signaling molecule, also forms an integral part of the activated methyl cycle and the metabolism of methionine and cysteine. The genuine luxS mutant CMPG5412 showed drastically reduced persistence in mice, which was related to less survival in simulated gastric juice, indicating that LuxS metabolism is crucial for the gastric stress resistance of L. rhamnosus GG. The suppressor mutations in the other luxS mutant, CMPG5413, appear to compensate for the metabolic defects of the luxS mutation and to restore the resistance to gastric juice but cause a defect in adherence, biofilm formation, and exopolysaccharide production. The shorter residence time of this suppressor mutant in the murine gastrointestinal tract indicates a role for biofilm formation and exopolysaccharides in the persistence capacity of L. rhamnosus GG

    Lc-p75 activity on purified muropeptides selected as substrates.

    No full text
    a<p>Di, disaccharide dipeptide; Tri, disaccharide tripeptide (L-Ala-D-iGln-L-Lys); Tetra, disaccharide tetrapeptide (L-Ala-D-iGln-L-Lys-D-Ala); Disaccharide, GlcNAc-MurNAc; iGln, isoglutamine; N, Asn; Ac, acetylation on MurNAc.</p>b<p>Similar amounts of each muropeptide were used for each test.</p>c<p>Percentage of each peak was calculated as the ratio of the peak area over the sum of areas of all the peaks identified in the corresponding chromatogram.</p>d<p>Other forms of muropeptides resulting from partial digestion of the substrate.</p

    Main muropeptides from <i>L. casei</i> BL23 PG hydrolyzed by Lc-p75 and main products of digestion.

    No full text
    a<p>Peak numbers refer to <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0032301#pone-0032301-g002" target="_blank">Figure 2</a> and <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0032301#pone.0032301.s004" target="_blank">Figure S3</a>. New peaks obtained after Lc-p75 digestion, are indicated by letters.</p>b<p>Di, disaccharide dipeptide (L-Ala-D-iGln); Tri, disaccharide tripeptide (L-Ala-D-iGln-L-Lys); Tetra, disaccharide tetrapeptide (L-Ala-D-iGln-L-Lys-D-Ala); Disaccharide, GlcNAc-MurNAc; Ac, acetylation on MurNAc, iGln, isoglutamine; N, D-Asn; A, D-Ala; K, L-Lys.</p>c<p>Sodiated molecular ions were the most abundant ones on MALDI-TOF mass spectra for all muropeptides.</p>d<p>Percentage of each peak was calculated as the ratio of the peak area over the sum of areas of all the peaks identified in the corresponding chromatogram (see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0032301#pone.0032301.s008" target="_blank">Table S3</a>).</p>e<p>ND, non detected.</p
    corecore