38 research outputs found

    Quantifying the escape mortality of trawl caught Antarctic krill (Euphausia superba)

    Get PDF
    <div><p>Antarctic krill (<i>Euphausia superba</i>) is an abundant fishery resource, the harvest levels of which are expected to increase. However, many of the length classes of krill can escape through commonly used commercial trawl mesh sizes. A vital component of the overall management of a fishery is to estimate the total fishing mortality and quantify the mortality rate of individuals that escape from fishing gear. The methods for determining fishing mortality in krill are still poorly developed. We used a covered codend sampling technique followed by onboard observations made in holding tanks to monitor mortality rates of escaped krill. Haul duration, hydrological conditions, maximum fishing depth and catch composition all had no significant effect on mortality of krill escaping 16 mm mesh size nets, nor was any further mortality associated with the holding tank conditions. A non- parametric Kaplan-Meier analysis was used to model the relationship between mortality rates of escapees and time. There was a weak tendency, though not significant, for smaller individuals to suffer higher mortality than larger individuals. The mortality of krill escaping the trawl nets in our study was 4.4 ± 4.4%, suggesting that krill are fairly tolerant of the capture-and-escape process in trawls.</p></div

    Krill oil reduces plasma triacylglycerol level and improves related lipoprotein particle concentration, fatty acid composition and redox status in healthy young adults - a pilot study

    Get PDF
    Background: Lipid abnormalities, enhanced inflammation and oxidative stress seem to represent a vicious circle in atherogenesis, and therapeutic options directed against these processes seems like a reasonable approach in the management of atherosclerotic disorders. Krill oil (RIMFROST Sublime®) is a phospholipid-rich oil with eicosapentaenoic acid (EPA): docosahexaenoic acid (DHA) ratio of 1.8:1. In this pilot study we determined if krill oil could favourable affect plasma lipid parameters and parameters involved in the initiation and progression of atherosclerosis. Methods: The study was conducted as a 28 days intervention study examining effect-parameters of dietary supplementation with krill oil (832.5 mg EPA and DHA per day). 17 healthy volunteers in the age group 18–36 (mean age 23 ± 4 years) participated. Plasma lipids, lipoprotein particle sizes, fatty acid composition in plasma and red blood cells (RBCs), plasma cytokines, antioxidant capacity, acylcarntines, carnitine, choline, betaine, and trimethylamine-N-oxide (TMAO) were measured before and after supplementation. Results: Plasma triacylglycerol (TAG) and large very-low density lipoprotein (VLDL) & chylomicron particle concentrations decreased after 28 days of krill oil intake. A significant reduction in the TAG/HDL cholesterol resulted. Krill oil supplementation decreased n-6/n-3 polyunsaturated fatty acids (PUFA) ratio both in plasma and RBCs. This was due to increased EPA, DHA and docosapentaenoic acid (DPA) and reduced amount of arachidonic acid (AA). The increase of n-3 fatty acids and wt % of EPA and DHA in RBC was of smaller magnitude than found in plasma. Krill oil intake increased the antioxidant capacity, double bond index (DBI) and the fatty acid anti-inflammatory index. The plasma atherogenicity index remained constant whereas the thrombogenicity index decreased. Plasma choline, betaine and the carnitine precursor, γ-butyrobetaine were increased after krill oil supplementation whereas the TMAO and carnitine concentrations remained unchanged. Conclusion: Krill oil consumption is considered health beneficial as it decreases cardiovascular disease risk parameters through effects on plasma TAGs, lipoprotein particles, fatty acid profile, redox status and possible inflammation. Noteworthy, no adverse effects on plasma levels of TMAO and carnitine were found.publishedVersio

    Impaired NDRG1 functions in Schwann cells cause demyelinating neuropathy in a dog model of Charcot-Marie-Tooth type 4D

    Get PDF
    Mutations in the N-myc downstream-regulated gene 1 (NDRG1) cause degenerative polyneuropathy in ways that are poorly understood. We have investigated Alaskan Malamute dogs with neuropathy caused by a missense mutation in NDRG1. In affected animals, nerve levels of NDRG1 protein were reduced by more than 70% (p < 0.03). Nerve fibers were thinly myelinated, loss of large myelinated fibers was pronounced and teased fiber preparations showed both demyelination and remyelination. Inclusions of filamentous material containing actin were present in adaxonal Schwann cell cytoplasm and Schmidt-Lanterman clefts. This condition strongly resembles the human Charcot-MarieTooth type 4D. However, the focally folded myelin with adaxonal infoldings segregating the axon found in this study are ultrastructural changes not described in the human disease. Furthermore, lipidomic analysis revealed a profound loss of peripheral nerve lipids. Our data suggest that the low levels of mutant NDRG1 is insufficient to support Schwann cells in maintaining myelin homeostasis. (C) 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

    Integrative omics-analysis of lipid metabolism regulation by peroxisome proliferator-activated receptor a and b agonists in male Atlantic cod

    Get PDF
    Lipid metabolism is essential in maintaining energy homeostasis in multicellular organisms. In vertebrates, the peroxisome proliferator-activated receptors (PPARs, NR1C) regulate the expression of many genes involved in these processes. Atlantic cod (Gadus morhua) is an important fish species in the North Atlantic ecosystem and in human nutrition, with a highly fatty liver. Here we study the involvement of Atlantic cod Ppar a and b subtypes in systemic regulation of lipid metabolism using two model agonists after in vivo exposure. WY-14,643, a specific PPARA ligand in mammals, activated cod Ppara1 and Ppara2 in vitro. In vivo, WY-14,643 caused a shift in lipid transport both at transcriptional and translational level in cod. However, WY-14,643 induced fewer genes in the fatty acid beta-oxidation pathway compared to that observed in rodents. Although GW501516 serves as a specific PPARB/D ligand in mammals, this compound activated cod Ppara1 and Ppara2 as well as Pparb in vitro. In vivo, it further induced transcription of Ppar target genes and caused changes in lipid composition of liver and plasma. The integrative approach provide a foundation for understanding how Ppars are engaged in regulating lipid metabolism in Atlantic cod physiology. We have shown that WY-14,643 and GW501516 activate Atlantic cod Ppara and Pparb, affect genes in lipid metabolism pathways, and induce changes in the lipid composition in plasma and liver microsomal membranes. Particularly, the combined transcriptomic, proteomics and lipidomics analyses revealed that effects of WY-14,643 on lipid metabolism are similar to what is known in mammalian studies, suggesting conservation of Ppara functions in mediating lipid metabolic processes in fish. The alterations in the lipid profiles observed after Ppar agonist exposure suggest that other chemicals with similar Ppar receptor affinities may cause disturbances in the lipid regulation of fish. Model organism: Atlantic cod (Gadus morhua). LSID: urn:lsid:zoobank.org:act:389BE401-2718-4CF2-BBAE-2E13A97A5E7B. COL Identifier: 6K72F.The study was carried out as part of the project “dCod 1.0: decoding systems toxicology of Atlantic cod” financed by the Norwegian Research Council (project no. 248840) and is part of Centre for Digital Life Norway (DLN), financed by the Research Council of Norway (project no. 248810). This work was also part of the iCod 2.0 project (project no. 244564) financed by the Norwegian Research Council. The UPLC-HRMS analysis was performed in collaboration with another project in DLN, AurOmega (project no. 269432). The Genomics Core Facility (GCF) at the University of Bergen, which is a part of the NorSeq consortium, provided services on RNA sequencing; GCF is supported in part by major grants from the Research Council of Norway (grant no. 245979/F50) and Bergen Research Foundation (BFS) (grant no. BFS2017TMT04 and BFS2017TMT08).Peer reviewe

    Bioavailability of fatty acids from krill oil, krill meal and fish oil in healthy subjects--a randomized, single-dose, cross-over trial

    Get PDF
    Background Krill contains two marine omega-3 polyunsaturated fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), mainly bound in phospholipids. Typical products from krill are krill oil and krill meal. Fish oils contain EPA and DHA predominantly bound in triglycerides. The difference in the chemical binding of EPA and DHA has been suggested to affect their bioavailability, but little is known on bioavailability of EPA and DHA in krill meal. This study was undertaken to compare the acute bioavailability of two krill products, krill oil and krill meal, with fish oil in healthy subjects. Methods A randomized, single-dose, single-blind, cross-over, active-reference trial was conducted in 15 subjects, who ingested krill oil, krill meal and fish oil, each containing approx. 1 700 mg EPA and DHA. Fatty acid compositions of plasma triglycerides and phospholipids were measured repeatedly for 72 hours. The primary efficacy analysis was based on the 72 hour incremental area under the curve (iAUC) of EPA and DHA in plasma phospholipid fatty acids. Results A larger iAUC for EPA and DHA in plasma phospholipid fatty acids was detected after krill oil (mean 89.08 ± 33.36% × h) than after krill meal (mean 44.97 ± 18.07% x h, p < 0.001) or after fish oil (mean 59.15 ± 22.22% × h, p=0.003). Mean iAUC’s after krill meal and after fish oil were not different. A large inter-individual variability in response was observed. Conclusion EPA and DHA in krill oil had a higher 72-hour bioavailability than in krill meal or fish oil. Our finding that bioavailabilities of EPA and DHA in krill meal and fish oil were not different argues against the interpretation that phospholipids are better absorbed than triglycerides. Longer-term studies using a parameter reflecting tissue fatty acid composition, like erythrocyte EPA plus DHA are needed

    Thin-Film Microextraction

    No full text

    Effects of krill oil and lean and fatty fish on cardiovascular risk markers: a randomised controlled trial

    No full text
    Fish consumption and supplementation with n-3 fatty acids reduce CVD risk. Krill oil is an alternative source of marine n-3 fatty acids and few studies have investigated its health effects. Thus, we compared krill oil supplementation with the intake of fish with similar amounts of n-3 fatty acids on different cardiovascular risk markers. In an 8-week randomised parallel study, thirty-six healthy subjects aged 18–70 years with fasting serum TAG between 1·3 and 4·0 mmol/l were randomised to receive either fish, krill oil or control oil. In the fish group, subjects consumed lean and fatty fish, according to dietary guidelines. The krill and control group received eight capsules per d containing 4 g oil per d. The weekly intake of marine n-3 fatty acids from fish given in the fish group and from krill oil in the krill group were 4103 and 4654 mg, respectively. Fasting serum TAG did not change between the groups. The level of total lipids (P = 0·007), phospholipids (P = 0·015), cholesterol (P = 0·009), cholesteryl esters (P = 0·022) and non-esterified cholesterol (P = 0·002) in the smallest VLDL subclass increased significantly in response to krill oil supplementation. Blood glucose decreased significantly (P = 0·024) in the krill group and vitamin D increased significantly in the fish group (P = 0·024). Furthermore, plasma levels of marine n-3 fatty acids increased significantly in the fish and krill groups compared with the control (all P ≤ 0·0003). In conclusion, supplementation with krill oil and intake of fish result in health-beneficial effects. Although only krill oil reduced fasting glucose, fish provide health-beneficial nutrients, including vitamin D

    A phospholipid-protein complex from krill with antioxidative and immunomodulating properties reduced plasma triacylglycerol and hepatic lipogenesis in rats

    Get PDF
    Dietary intake of marine omega-3 polyunsaturated fatty acids (n-3 PUFAs) can change the plasma profile from atherogenic to cardioprotective. In addition, there is growing evidence that proteins of marine origin may have health benefits. We investigated a phospholipid-protein complex (PPC) from krill that is hypothesized to influence lipid metabolism, inflammation, and redox status. Male Wistar rats were fed a control diet (2% soy oil, 8% lard, 20% casein), or diets where corresponding amounts of casein and lard were replaced with PPC at 3%, 6%, or 11% (wt %), for four weeks. Dietary supplementation with PPC resulted in significantly lower levels of plasma triacylglycerols in the 11% PPC-fed group, probably due to reduced hepatic lipogenesis. Plasma cholesterol levels were also reduced at the highest dose of PPC. In addition, the plasma and liver content of n-3 PUFAs increased while n-6 PUFAs decreased. This was associated with increased total antioxidant capacity in plasma and increased liver gene expression of mitochondrial superoxide dismutase (Sod2). Finally, a reduced plasma level of the inflammatory mediator interleukin-2 (IL-2) was detected in the PPC-fed animals. The present data show that PPC has lipid-lowering effects in rats, and may modulate risk factors related to cardiovascular disease progression
    corecore