7 research outputs found

    Endogenous reference RNAs for microRNA quantitation in formalin-fixed, paraffin-embedded lymph node tissue

    Get PDF
    Lymph node metastasis is one of the most important factors for tumor dissemination. Quantifying microRNA (miRNA) expression using real-time PCR in formalin-fixed, paraffin-embedded (FFPE) lymph node can provide valuable information regarding the biological research for cancer metastasis. However, a universal endogenous reference gene has not been identified in FFPE lymph node. This study aimed to identify suitable endogenous reference genes for miRNA expression analysis in FFPE lymph node. FFPE lymph nodes were obtained from 41 metastatic cancer and from 16 non-cancerous tissues. We selected 10 miRNAs as endogenous reference gene candidates using the global mean method. The stability of candidate genes was assessed by the following four statistical tools: BestKeeper, geNorm, NormFinder, and the comparative ΔCt method. miR-103a was the most stable gene among candidate genes. However, the use of a single miR-103a was not recommended because its stability value exceeded the reference value. Thus, we combined stable genes and investigated the stability and the effect of gene normalization. The combination of miR-24, miR-103a, and let-7a was identified as one of the most stable sets of endogenous reference genes for normalization in FFPE lymph node. This study may provide a basis for miRNA expression analysis in FFPE lymph node tissue

    Statistical Evaluation of Total Expiratory Breath Samples Collected throughout a Year: Reproducibility and Applicability toward Olfactory Sensor-Based Breath Diagnostics

    No full text
    The endogenous volatile organic compounds (VOCs) in exhaled breath can be promising biomarkers for various diseases including cancers. An olfactory sensor has a possibility for extracting a specific feature from collective variations of the related VOCs with a certain health condition. For this approach, it is important to establish a feasible protocol for sampling exhaled breath in practical conditions to provide reproducible signal features. Here we report a robust protocol for the breath analysis, focusing on total expiratory breath measured by a Membrane-type Surface stress Sensor (MSS), which possesses practical characteristics for artificial olfactory systems. To assess its reproducibility, 83 exhaled breath samples were collected from one subject throughout more than a year. It has been confirmed that the reduction of humidity effects on the sensing signals either by controlling the humidity of purging room air or by normalizing the signal intensities leads to reasonable reproducibility verified by statistical analyses. We have also demonstrated the applicability of the protocol for detecting a target material by discriminating exhaled breaths collected from different subjects with pre- and post-alcohol ingestion on different occasions. This simple yet reproducible protocol based on the total expiratory breath measured by the MSS olfactory sensors will contribute to exploring the possibilities of clinical applications of breath diagnostics

    Availability of Circulating MicroRNAs as a Biomarker for Early Diagnosis of Diffuse Large B-Cell Lymphoma

    No full text
    Abstract Background: MicroRNA (miRNA) regulates post-transcriptional gene expression through binding to complementary sites of target messenger RNA, including that from oncogenes or tumor suppressor genes. This study planned to pursue the possibility that circulating miRNA could be used for the early diagnosis of diffuse large B-cell lymphoma (DLBCL). Materials and Methods: Expression levels of miRNA obtained from serum, exosome-enriched serum, and formalin-fixed paraffinembedded (FFPE) tissue were evaluated. Samples were collected from patients with newly diagnosed DLBCL (n = 33) or healthy volunteers (n = 22). Based on the results of previous reports, ten miRNAs were selected and expression levels were analyzed by the quantitative real-time PCR. Results: The expression levels of hsa-miR-15a-3p, hsa-miR-21-5p, hsa-miR-181a-5p, and hsa-miR-210-5p differed significantly between DLBCL patients and controls in serum and/or exosomeenriched serum, but not in FFPE tissue. In contrast, expression levels of hsa-miR-155-5p in FFPE tissue were significantly higher in DLBCL patients, as previously reported. Conclusion: We confirmed that some miRNAs were differentially expressed in serum from DLBCL patients as previously reported. Measurement of these miRNA in exosome-enriched serum did not improve the accuracy in the differential diagnosis of DLBCL. In addition, these miRNAs seem to be produced outside of lymphoma tissue. * Corresponding author. K. Inada et al. 4
    corecore