137 research outputs found

    Compliance of publicly available mammographic databases with established case selection and annotation requirements

    Get PDF
    Mammographic databases play an important role in the development of algoritms aiming to improve Computer-Aided Detection and Diagnosis systems (CAD). However, these often do not take into consideration all the requirements needed for a proper study, previously discussed at the Biomedical Image Processin Meeting in 1993.info:eu-repo/semantics/publishedVersio

    Postural control during turn on the light task assisted by functional electrical stimulation in post stroke subjects

    Get PDF
    Postural control mechanisms have a determinant role in reaching tasks and are typically impaired in post-stroke patients. Functional electrical stimulation (FES) has been demonstrated to be a promising therapy for improving upper limb (UL) function. However, according to our knowledge, no study has evaluated FES infuence on postural control. This study aims to evaluate the infuence of FES UL assistance, during turning on the light task, in the related postural control mechanisms. An observational study involving ten post-stroke subjects with UL dysfunction was performed. Early and anticipatory postural adjustments (EPAs and APAs, respectively), the weight shift, the center of pressure and the center of mass (CoM) displacement were analyzed during the turning on the light task with and without the FES assistance. FES parameters were adjusted to improve UL function according to a consensus between physiotherapists’ and patients’ perspectives. The ANOVA repeated measures, Paired sample t and McNemar tests were used to compare postural control between the assisted and non-assisted conditions. When the task was assisted by FES, the number of participants that presented APAs increased (p= 0.031). UL FES assistance during turning on the light task can improve postural control in neurological patients with UL impairments.info:eu-repo/semantics/publishedVersio

    Usability of functional electrical stimulation in upper limb rehabilitation in post-stroke patients: A narrative review

    Get PDF
    Stroke leads to significant impairment in upper limb (UL) function. The goal of rehabilitation is the reestablishment of pre-stroke motor stroke skills by stimulating neuroplasticity. Among several rehabilitation approaches, functional electrical stimulation (FES) is highlighted in stroke rehabilitation guidelines as a supplementary therapy alongside the standard care modalities. The aim of this study is to present a comprehensive review regarding the usability of FES in post-stroke UL rehabilitation. Specifically, the factors related to UL rehabilitation that should be considered in FES usability, as well a critical review of the outcomes used to assess FES usability, are presented. This review reinforces the FES as a promising tool to induce neuroplastic modifications in post-stroke rehabilitation by enabling the possibility of delivering intensive periods of treatment with comparatively less demand on human resources. However, the lack of studies evaluating FES usability through motor control outcomes, specifically movement quality indicators, combined with user satisfaction limits the definition of FES optimal therapeutical window for different UL functional tasks. FES systems capable of integrating postural control muscles involving other anatomic regions, such as the trunk, during reaching tasks are required to improve UL function in post-stroke patients.info:eu-repo/semantics/publishedVersio

    Mitochondrial fatty acid β-oxidation disorders: from disease to lipidomic studies—a critical review

    Get PDF
    Fatty acid oxidation disorders (FAODs) are inborn errors of metabolism (IEMs) caused by defects in the fatty acid (FA) mitochondrial β-oxidation. The most common FAODs are characterized by the accumulation of medium-chain FAs and long-chain (3-hydroxy) FAs (and their carnitine derivatives), respectively. These deregulations are associated with lipotoxicity which affects several organs and potentially leads to life-threatening complications and comorbidities. Changes in the lipidome have been associated with several diseases, including some IEMs. In FAODs, the alteration of acylcarnitines (CARs) and FA profiles have been reported in patients and animal models, but changes in polar and neutral lipid profile are still scarcely studied. In this review, we present the main findings on FA and CAR profile changes associated with FAOD pathogenesis, their correlation with oxidative damage, and the consequent disturbance of mitochondrial homeostasis. Moreover, alterations in polar and neutral lipid classes and lipid species identified so far and their possible role in FAODs are discussed. We highlight the need of mass-spectrometry-based lipidomic studies to understand (epi)lipidome remodelling in FAODs, thus allowing to elucidate the pathophysiology and the identification of possible biomarkers for disease prognosis and an evaluation of therapeutic efficacyinfo:eu-repo/semantics/publishedVersio

    Enzymatically activated emulsions stabilised by interfacial nanofibre networks

    Get PDF
    We report on-demand formation of emulsions stabilised by interfacial nanoscale networks. These are formed through biocatalytic dephosphorylation and self-assembly of Fmoc(9-fluorenylmethoxycarbonyl)-dipeptide amphiphiles in aqueous/organic mixtures. This is achieved by using alkaline phosphatase which transforms surfactant-like phosphorylated precursors into self-assembling aromatic peptide amphiphiles (Fmoc-tyrosine-leucine, Fmoc-YL) that form nanofibrous networks. In biphasic organic/aqueous systems, these networks form preferentially at the interface thus providing a means of emulsion stabilisation. We demonstrate on-demand emulsification by enzyme addition, even after storage of the biphasic mixture for several weeks. Experimental (Fluorescence, FTIR spectroscopy, fluorescence microscopy, electron microscopy, atomic force microscopy) and computational techniques (atomistic molecular dynamics) are used to characterise the interfacial self-assembly process

    Plasma phospholipidomic profile differs between children with phenylketonuria and healthy children

    Get PDF
    Phenylketonuria (PKU) is a disease of the catabolism of phenylalanine (Phe), caused by an impaired function of the enzyme phenylalanine hydroxylase. Therapeutics is based on the restriction of Phe intake, which mostly requires a modification of the diet. Dietary restrictions can lead to imbalances in specific nutrients, including lipids. In the present study, the plasma phospholipidome of PKU and healthy children (CT) was analysed by HILIC-MS/MS and GC-MS. Using this approach, 187 lipid species belonging to 9 different phospholipid classes and 3 ceramides were identified. Principal component analysis of the lipid species dataset showed a distinction between PKU and CT groups. Univariate analysis revealed that 146 species of phospholipids were significantly different between both groups. Lipid species showing significant variation included phosphatidylcholines, containing polyunsaturated fatty acids (PUFA), which were more abundant in PKU. The high level of PUFA-containing lipid species in children with PKU may be related to a diet supplemented with PUFA. This study was the first report comparing the plasma polar lipidome of PKU and healthy children, highlighting that the phospholipidome of PKU children is significantly altered compared to CT. However, further studies with larger cohorts are needed to clarify whether these changes are specific to phenylketonuric children.publishe

    Computational prediction of tripeptide-dipeptide co-assembly

    Get PDF
    In this work, we describe the development of a computational screening approach for tripeptide-dipeptide co-assembly. Studies are carried out both in water and in oil–water mixtures, to evaluate possible candidates that give rise to hydrogels or more stable emulsions, respectively, through nanofibre formation. The results give rise to design rules for the identification of promising systems for numerous types of soft materials. The possibility of achieving innovative functional materials through the co-assembly of tripeptides and dipeptides is studied. In particular, coarse-grained simulations allowed for the extraction of some promising dipeptides that, together with H-aspartyl-phenylalanyl-phenylalanine-OH (DFF), are able to act as hydrogelators or emulsifiers with superior characteristics relative to DFF on its own

    Dried blood spots in clinical lipidomics: optimization and recent findings

    Get PDF
    Dried blood spots (DBS) are being considered as an alternative sampling method of blood collection that can be used in combination with lipidomic and other omic analysis. DBS are successfully used in the clinical context to collect samples for newborn screening for the measurement of specifc fatty acid derivatives, such as acylcarnitines, and lipids from whole blood for diagnostic purposes. However, DBS are scarcely used for lipidomic analysis and investigations. Lipidomic stud ies using DBS are starting to emerge as a powerful method for sampling and storage in clinical lipidomic analysis, but the major research work is being done in the pre- and analytical steps and procedures, and few in clinical applications. This review presents a description of the impact factors and variables that can afect DBS lipidomic analysis, such as the type of DBS card, haematocrit, homogeneity of the blood drop, matrix/chromatographic efects, and the chemical and physi cal properties of the analyte. Additionally, a brief overview of lipidomic studies using DBS to unveil their application in clinical scenarios is also presented, considering the studies of method development and validation and, to a less extent, for clinical diagnosis using clinical lipidomics. DBS combined with lipidomic approaches proved to be as efective as whole blood samples, achieving high levels of sensitivity and specifcity during MS and MS/MS analysis, which could be a useful tool for biomarker identifcation. Lipidomic profling using MS/MS platforms enables signifcant insights into physiological changes, which could be useful in precision medicine.info:eu-repo/semantics/publishedVersio

    Lipids and phenylketonuria: current evidences pointed the need for lipidomics studies

    Get PDF
    Phenylketonuria (PKU) is the most prevalent inborn error of amino acid metabolism. The disease is due to the deficiency of phenylalanine (Phe) hydroxylase activity, which causes the accumulation of Phe. Early diagnosis through neonatal screening is essential for early treatment implementation, avoiding cognitive impairment and other irreversible sequelae. Treatment is based on Phe restriction in the diet that should be maintained throughout life. High dietary restrictions can lead to imbalances in specific nutrients, notably lipids. Previous studies in PKU patients revealed changes in levels of plasma/serum lipoprotein lipids, as well as in fatty acid profile of plasma and red blood cells. Most studies showed a decrease in important polyunsaturated fatty acids, namely DHA (22:6n-3), AA (20:4n-6) and EPA (20:5n-6). Increased oxidative stress and subsequent lipid peroxidation have also been observed in PKU. Despite the evidences that the lipid profile is changed in PKU patients, more studies are needed to understand in detail how lipidome is affected. As highlighted in this review, mass spectrometry-based lipidomics is a promising approach to evaluate the effect of the diet restrictions on lipid metabolism in PKU patients, monitor their outcome, namely concerning the risk for other chronic diseases, and find possible prognosis biomarkers.publishe

    Potential of Coccolithophore microalgae as fillers in starch-based films for active and sustainable food packaging

    Get PDF
    Coccolithophore microalgae, such as Emiliania huxleyi (EHUX) and Chrysotila pseudoroscoffensis (CP), are composed of calcium carbonate (CaCO3) and contain bioactive compounds that can be explored to produce sustainable food packaging. In this study, for the first time, these microalgae were incorporated as fillers in starch-based films, envisioning the development of biodegradable and bioactive materials for food packaging applications. The films were obtained by solvent casting using different proportions of the filler (2.5, 5, 10, and 20%, w/w). For comparison, commercial CaCO3, used as filler in the plastic industry, was also tested. The incorporation of CaCO3 and microalgae (EHUX or CP) made the films significantly less rigid, decreasing Young’s modulus up to 4.7-fold. Moreover, the incorporation of microalgae hydrophobic compounds as lipids turned the surface hydrophobic (water contact angles > 90°). Contrary to what was observed with commercial CaCO3, the films prepared with microalgae exhibited antioxidant activity, increasing from 0.9% (control) up to 60.4% (EHUX 20%) of ABTS radical inhibition. Overall, the introduction of microalgae biomass improved hydrophobicity and antioxidant capacity of starch-based films. These findings should be considered for further research using coccolithophores to produce active and sustainable food packaging material.info:eu-repo/semantics/publishedVersio
    • …
    corecore