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Postural control during turn 
on the light task assisted 
by functional electrical stimulation 
in post stroke subjects
Andreia S. P. Sousa1*, Juliana Moreira1, Claudia Silva1, Inês Mesquita2, Augusta Silva1, 
Rui Macedo1 & Rubim Santos3

Postural control mechanisms have a determinant role in reaching tasks and are typically impaired 
in post-stroke patients. Functional electrical stimulation (FES) has been demonstrated to be a 
promising therapy for improving upper limb (UL) function. However, according to our knowledge, 
no study has evaluated FES influence on postural control. This study aims to evaluate the influence 
of FES UL assistance, during turning on the light task, in the related postural control mechanisms. 
An observational study involving ten post-stroke subjects with UL dysfunction was performed. Early 
and anticipatory postural adjustments (EPAs and APAs, respectively), the weight shift, the center of 
pressure and the center of mass (CoM) displacement were analyzed during the turning on the light 
task with and without the FES assistance. FES parameters were adjusted to improve UL function 
according to a consensus between physiotherapists’ and patients’ perspectives. The ANOVA repeated 
measures, Paired sample t and McNemar tests were used to compare postural control between the 
assisted and non-assisted conditions. When the task was assisted by FES, the number of participants 
that presented APAs increased (p = 0.031). UL FES assistance during turning on the light task can 
improve postural control in neurological patients with UL impairments.

Postural control assumes a determinant role in daily life activities, being particularly relevant for those involving 
large movements of the arm or trunk or when that limb supports the  body1–3. Being dependent on the continuous 
afferent information on body position and orientation from visual, vestibular, or somatosensory input and the 
subsequent motor commands to muscle synergies, postural control is the result of several neural circuits. From 
these, the supplementary motor  area4,5, the premotor  cortex6, and the pontomedullary reticular  formation7–9 
have been demonstrated to have an important role in feedforward  mechanisms10.

When reaching for an object, feedforward components contribute to motor action optimization [early pos-
tural adjustments (EPAs)], posture stabilization [anticipatory postural adjustments (APAs)], weight shift to move 
the body center of mass (CoM) towards the object, and for the regulation of the CoM position in the base of 
support [CoM and center of pressure (CoP) relation (CoP-CoM)]10–15. In this sense, voluntary movements of a 
limb are preceded and accompanied by feedforward postural control mechanisms. These prepare the body for 
the action, and for the expected disturbance of the CoM that will be produced by that movement. Feedforward 
postural control mechanisms also stabilize the CoM during the execution of the movement  itself10.

Changes in these postural control mechanisms have been demonstrated in post-stroke subjects. Specifi-
cally these changes have been expressed through: (1) decreased APAs in trunk  muscles16,17; (2) increased trunk 
compensatory  strategies18; (3) reduced weight transference for the contralesional  limb19,20; and (4) deregulation 
between  CoP21 and CoM  displacement22,23. Despite feedforward postural control and voluntary arm movement 
are thought to be controlled by different pathways, its parallel  distribution7 has supported the causal relation 
established between the impairment of feedforward mechanisms and dysfunctional voluntary movement in 
post-stroke subjects, particularly those that have a lesion in the territory of the middle cerebral  artery24. In fact, 
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the high percentage of post-stroke patients that present motor control impairments in contralesional limb in 
reaching tasks can be related to dysfunction of the neural networks that control movement, but also to dysfunc-
tion of the neural networks controlling postural control  mechanisms16,17,24,25.

Previous studies have demonstrated that functional electrical stimulation (FES), applied to the upper limb 
(UL) muscles, is effective for improving simple single-joint movements, as well as more complex reach-to-grasp 
movements performed with the contralesional UL in post-stroke  patients26–30. These findings support the use of 
FES as a promising therapy in stroke  rehabilitation31. However, according to our knowledge, no study has assessed 
the influence of FES assistance in reaching tasks in the related postural control mechanisms. We believe that the 
cortical  reorganization32,33 and  excitability34,35 decurrent from the increased afferent input from muscle spindles 
and Golgi tendon organs, due to muscle contraction mediated by  FES36, would contribute to an improvement 
of postural control. Moreover, based on the evidence that quantitative and clinical measures of postural control 
improve with task-oriented arm training, without explicit postural control goals, instruction, or  feedback37, it can 
be hypothesized that the positive results of UL FES found in post-stroke  subjects31 could be related to the demon-
strated increased movement quality  indicators30,38, but also to an improvement in postural control mechanisms.

This study aims to evaluate the influence of FES assistance during turning on the light task in the related 
postural control mechanisms including EPAs and APAs occurrence before the beginning of the task, the weight 
shift, the regulation of CoM, and CoP forward displacement during reaching. The turn on the light task has been 
recommended as a real, and daily life purpose task that could be performed by patients with moderate or severe 
impairment as just involve reaching without  grasping39.

Methods
Subjects. This study is integrated into a more global project with results already published in previous 
 studies30,38. A cross-sectional study was performed involving ten subjects (4 females and 6 males), mean age 
of 53.50 ± 10.97, with a history of a single unilateral stroke (4 ischemic and 6 hemorrhagic), affecting the right 
(n = 6) and left (n = 4) hemispheres that resulted in a motor control dysfunction of the contralesional UL, with 
implication in performing turning on the light task, Table 1. Inclusion criteria have already been stated in our 
previous  studies30,38 and included: (a) a first unilateral stroke (confirmed by imaging) for at least 6 months; (b) 
preserved cognitive function, corresponding to a score higher than 23 in the Mini-Mental State Examination 
(MMSE)40 and (c) the ability to perform active movement of the contralesional UL of at least 15° of shoulder 
flexion and elbow flexion/extension. Exclusion criteria included: (a) hemi-spatial neglect and/or uncorrected 
visual changes; (b) musculoskeletal or other neurological conditions which might affect ULs and/or trunk func-
tion; (c) pain in the ULs; (d) lesion or adverse skin reaction to electrodes gel and/or hypersensitivity to electrical 
stimulation of the contralesional forearm; (e) epilepsy and frequent convulsions; (f) tumors in the contralesional 
forearm region submitted to electrical stimulation; (g) clinical signs of increased muscle resistance against pas-
sive stretching in the contralesional forearm muscles [confirmed by a score higher than three in the Modified 
Ashworth Scale (MAS)]; (h) osteosynthesis or metallic implants and/or pacemaker and/or ventriculoperitoneal 
derivation devices and (i) pregnancy.

Ethical considerations. Ethical approval was obtained by the local and the national Ethics Committee for 
Clinical Research (CEIC). The study was also approved by INFARMED I. P., and was registered at ClinicalTrials.
gov with identifier: NCT03967613. All participants gave written informed consent before the data collection 
began as per the Declaration of Helsinki.

Instruments. The Portuguese version of Mini-Mental State Examination (MMSE)40,41, Fugl-Meyer Assess-
ment Scale-Upper Extremity (FMAS-UE)42, and Modified Ashworth Scale (MAS)43 were applied to assess basic 
cognitive  functions40, UL sensorimotor impairment  severity44, and the muscle resistance against passive stretch-
ing in the contralesional forearm  muscles43, respectively. The Portuguese version of the Patient Global Impres-
sion of Change (PGIC)  scale45 was used to assess the participants’ perception of change concerning the move-
ment of the contralesional UL assisted by FES against without stimulation. Height and weight were obtained 
using a stadiometer  (seca® 222, Seca GmbH & Co. KG, Hamburg, Germany) and a balance scale  (seca® 760).

The kinematic data of the trunk and contralesional UL and ground reaction forces were acquired during 
the performance of the functional task through Qualisys System (Qualisys  AB®, Gothenburg, Sweden), with 
eight Oqus cameras (operating at 200 Hz) and a set of 15 reflective markers (Fig. 1). The values of the vertical 
(Fz) component of ground reaction forces (GRF), as well as the values of center of pressure in anteroposterior 
 (CoPAP) and mediolateral  (CoPML) directions, were acquired using two force plates at a sampling rate of 100 Hz 
(FP4060-08 and FP4060-10 models from Bertec Corporation (USA), connected to a Bertec AM 6300 amplifier 
and to an analog board, from Qualysis, Inc. (Sweden)). The Visual 3D Professional software, version 6 was used 
to perform all the events detections and metric calculations.

A superficial multi-field electrode FES system (FES-HAND, Tecnalia Research & Innovation-Health Division, 
San Sebastián, Guipúzcoa, Spain) was used. The FES-HAND system includes a 40 channels’ stimulator device, 
with 32 cathodes or active fields and 8 anodes or return fields, and a multi-field electrode supported by a textile 
garment covering the forearm. The stimulator had a predefined frequency of 35 Hz, a pulse width of 300 µs 
(biphasic symmetrical), and a begin/end ramp time of 1 s. The stimulation fields, the intensity, and the stimula-
tion time were configured through a dedicated software application developed for this purpose (NeuroClinic 
FES v1.9.24). The number active fields, the intensity of each active field and the time of the active fields were 
adjusted for each patient to obtain a selective motor response regarding wrist and fingers extension movements. 
A representation of the active fields selected for each patient is presented in Fig. 2.
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All subjects used standard tennis footwear (1.5 cm heel), in their adequate size, as different footwear leads to 
divergent levels of postural stability, reflected in CoP  displacement46.

Procedures. Before the evaluation, each participant took part in five adaptation sessions to the electrical 
stimulation in the contralesional limb. These sessions involved a randomized stimulation for ten minutes to 
familiarize the patient with the sensation produced by the application of FES and to increase motor nerve excit-
ability. In the first adaptation session, the stimulation intensity was increased from 5 mA to a comfortable motor 
threshold, maintained for 1–2 min, with further increases of 2 mA according to the patient’s tolerance. In the 
subsequent sessions, the protocol was repeated, but the stimulation intensity started with a value of 5 mA lower 
than the maximum amplitude reached in the previous session. After this period, an expert physiotherapist man-
ually tested and defined the active electrode fields, intensities, and stimulation time leading to a selective motor 
response regarding wrist and fingers extension  movements47–49 and improving UL function during the tuning 
on the light for each patient (Fig. 2). It was considered that the function was improved when a score higher than 
3 was obtained on the PGIC scale. The stimulation parameters saved in the last randomized stimulation session 
were always tested and manually adjusted by the physiotherapist before the kinematic evaluation of the task. No 
adverse effect occurred, nor any subject complaint with the stimuli.

The participants were requested to turn on the light by pressing a switch with the contralesional limb from a 
sitting position and at a comfortable self-selected speed. The seat height was adjusted to 100% of the leg length 
(measured from the lateral epicondyle of the femur to the ground). The task was performed without trunk 
support or restraint, with three-fourths of the femur length supported, and each foot positioned in each force 
 plate50. The switch (42.25  cm2 of area) was attached to a wooden board containing a lamp and an electrical circuit 

Table 1.  Characterization of post-stroke participants according to sex (M: male, F: female), age (years), weight 
(kg) and height (m), handedness (R: right, L: left), stroke type (I: ischemic, H: hemorrhagic), sub-type (MCA: 
middle cerebral artery, ICA: internal carotid artery) and location, injured hemisphere (R; L), time after stroke 
(months) and the scores of the Mini-Mental State Examination (MMSE), Fugl-Meyer Assessment Scale-Upper 
Extremity (FMAS-UE), Modified Ashworth Scale (MAS), and Patient Global Impression of Change (PGIC).

ID Sex Age (years) Weight (kg)
Height 
(m) Dominance

Type 
(sub-
type) Location

Injured 
hemisphere

Time after 
stroke 
(months) MMSE MAS FMAS-UE PGIC

1 M 55 75.0 1.69 L
H 
(Unde-
ter-
mined)

Thalamo-
capsulo-
pontine

R 49 28 1 + (2) 47 6

2 M 48 79.0 1.80 R
I (Large 
artery 
(MCA))

Fronto-
temporo-
oper-
culum-
insular

L 84 30 1 (1) 42 5

3 M 60 79.0 1.64 R

I (Large 
artery 
(Ver-
tebro-
basilar))

Lenticulo-
capsular L 56 25 1 (1) 50 3

4 F 42 60.0 1.60 R
H 
(Unde-
ter-
mined)

Lenticulo-
capsular R 52 30 1 46 3

5 M 40 100.0 1.74 R
H 
(Unde-
ter-
mined)

Basal 
ganglia R 27 27 1 + (2) 28 6

6 M 65 82.0 1.75 R
I (Large 
artery 
(MCA))

Fronto-
temporo-
parietal-
insular

R 62 27 2 (3) 39 2

7 M 53 70.0 1.64 R
H 
(Unde-
ter-
mined)

Lenticulo-
capsular L 63 27 1 (1) 58 3

8 F 64 60.0 1.59 R
H 
(Unde-
ter-
mined)

Thalamo-
capsular L 37 23 1 + (2) 40 3

9 F 39 80.0 1.67 R
H 
(Unde-
ter-
mined)

Striato-
capsular R 141 29 1 + (2) 33 3

10 F 69 66.0 1.46 R I (Lacu-
nar)

Lenticulo-
capsular R 12 27 0 (0) 41 6

M ± SD 4F;6 M 53.50 ± 10.97 75.10 ± 11.96 1.66 ± 0.10 9R;1L 4I;6H _ 6R;4L 58.30 ± 35.35 27.30 ± 2.16 – 42.40 ± 8.50 4.10 ± 1.45
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allowing it to light up once the switch was pushed. All the system with the lamp was placed on a table located in 
front of each participant. The height of the table was adjusted to the olecranon’s height and the switch was placed 
in front of the ipsilateral hip (sagittal plane) at a distance of this joint equal to the length between the acromion 
and the trapezium-metacarpal joint of the ipsilateral  UL51. The participants performed six trials of the task, 
three with and three without the assistance of FES (FES-HAND). When the task was assisted by FES-HAND 
in the contralesional limb, the patients were instructed to actively participate in the movement after feeling the 

Figure 1.  Anatomical references for reflective markers placement. C7spinous process of the 7th cervical 
vertebra; IJ incisura jugularis, LAC middle part of left acromion, LASIS left anterior superior iliac spine, LLELB 
lateral epicondyle of left humerus, LLH lateral side of the head of the second left metacarpal, LMELB medial 
epicondyle of left humerus, LMH medial side of the head of the fifth left metacarpal, LPSIS left posterior 
superior iliac spine, LRAD styloid process of left radius, LULN styloid process of left ulna, PX processus 
xiphoideus, RAC  middle part of right acromion, RASIS right anterior superior iliac spine, RLELB lateral 
epicondyle of right humerus, RLH lateral side of the head of the second right metacarpal, RMELB medial 
epicondyle of right humerus, RMH medial side of the head of the fifth right metacarpal, RPSIS right posterior 
superior iliac spine, RRAD  styloid process of right radius, RULN styloid process of right ulna.

Figure 2.  Representation of the active fields selected for each patient.
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electrode stimulus. When the task was performed without FES-HAND assistance, the participants were verbally 
informed when to start the task.

Data processing. Event definition of task phases detection. The kinematic data was processed through 
Qualisys Track Manager (Qualisys AB, Gothenburg, Sweden) and Visual3D (C-Motion, Inc., Germantown, 
USA) software following the International Society of Biomechanics recommendations and the methods of pre-
vious  studies52. The movement trajectory and force plate data were low-pass Butterworth filtered with a cut of 
frequency of 6 Hz and 20 Hz, respectively.

The “onset” of the task, designated by T0, was defined as the time when the tangential velocity of the hand 
exceed 2% of the maximum velocity in the reaching  phase53. The “reaching” phase end (beginning of the return 
to start position) was defined as the instant when the linear velocity of the hand crossed the zero value down-
wards in the sagittal plane.

Postural control metrics. The  CoPAP backward displacement in the time window of early postural adjustments 
(EPAs) (from 600 to 250 ms before  T015) and anticipatory postural adjustments (APAs) (from 200 ms before to 
50 ms after  T054) was defined as an interval lasting for, at least, 50 ms when its value was lower than the mean 
minus 3 standard deviations (SD) of the baseline of the center of pressure displacement in the anteroposterior 
direction  (CoPAP). The baseline of the center of pressure displacement in the direction of the contralesional 
limb  (CoPML) was defined as an interval lasting for, at least, 50 ms when its value was lower or higher than the 
mean minus or plus 3 SD of its baseline, respectively, depending on if the contralesional limb was the left or 
right limb. The baseline interval for EPAs was considered from 650 to 600 ms before  T015, and for anticipatory 
postural adjustments was considered from 250 to 200 ms before  T054. If the participant presented a backward 
displacement or a displacement in the direction of the contralesional limb in the time window of EPAs or APAs, 
it was considered the participant presented EPAs or APAs, respectively (Fig. 3). It was considered for analysis the 
number of participants that presented EPAs or APAs, and EPAs and APAs.

The CoM and CoP displacement, during the reaching phase, was calculated as the difference between the 
end and the beginning of the reaching phase in the anteroposterior and mediolateral directions (Fig. 2). The 
difference between CoM and CoP (CoP-CoM) was calculated to assess postural stability during the reaching 
 phase22. The Asymmetry Index was  calculated55 to provide a measure of the amount of weight-bearing variation 
on each limb during reaching:

where �Fy refers to the vertical ground reaction force variation during reaching. A higher Asymmetry Index 
score represents greater weight-bearing on the contralesional limb while ‘0’ represents perfect symmetry (50% 
weight-bearing on each limb), during reaching phase of turning on the light. The arithmetic mean of three valid 
trials was used for the analysis.

Statistics. Version 25.0 of the Statistical Package for the Social Science  (SPSS®) software was used for descrip-
tive and inferential statistical analysis, with a level of significance of 0.05.

The ANOVA repeated measures was used to compare the CoM and CoP displacement variables and the 
CoP-CoM differences, considering the AP and ML directions as well the composed value during the reaching 
phase of the turning on the light task, between the assisted and non-assisted conditions. The paired sample t test 
was used to compare the Asymmetry Index during the same phase between conditions. The McNemar test was 
used to compare the proportion of participants that presented early postural adjustments and/or anticipatory 
postural adjustments between the task performed with and without FES-HAND assistance.

Results
As observed in Fig. 4, statistically significant differences were noted in the number of participants that presented 
APAs between conditions (p = 0.031, (1 − β) = 0.75). Specifically, when the task was performed without assistance, 
APAs were only observed in three participants. When the task was performed with FES-HAND assistance, APAs 
were observed in the same three participants but also in more 6 participants, performing a total of 9 participants. 
Also, the number of participants that presented both EPAs and APAs duplicated when the task was assisted by 
FES-HAND. However, the differences were not statistically significant (p = 0.500, (1 − β) = 0.63) (Fig. 4).

Figure 5 present the values of CoP and CoM displacement, during the reaching phase of the turning on the 
light performed, with and without FES-HAND assistance. While a tendency to decreased  CoMAP, combined with 
an increase of  CoPAP and decrease of the related difference was observed when the task was assisted by FES-
HAND (Fig. 5), no statistically significant differences were observed in CoP (Z = 2.366, p = 0.113, (1 − β) = 0.437) 
and CoM displacement (Z = 2.559, p = 0.096, (1 − β = 0.467), as well in CoP-CoM difference (Z = 0.049, p = 0.952, 
(1 − β) = 0.057).

Despite a tendency to an increase of weight-bearing Asymmetry Index toward the contralesional limb when 
the task was assisted by FES-HAND (Fig. 6), the differences were not statistically significant (t = − 0.395, p = 0.702, 
(1 − β) = 0.138).

Asymmetry Index =
(�FyCONTRA −�FyIPSI )

(0.5(�FyCONTRA +�FyIPSI ))
× 100,
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Figure 3.  Representation of EPAs and APAs timing and CoP displacement during reaching when the task was 
assisted by FES-HAND.

Figure 4.  Description of the number of participants that presented EPAs or APAs and EPAs and APAs before 
the beginning of the turning on the light with and without FES-HAND assistance. Proof values (p values) from 
between conditions comparisons are presented. Statistically significant values were identified in bold and with *.
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Discussion
The results obtained in the present study demonstrate that when turning on the light was assisted by FES-
HAND, the number of participants that presented APAs increased from 3 to 9. The APAs were associated with 
a displacement of CoP backward or toward the contralesional limb which is probably resultant from increased 
APAs in trunk  muscles56–59 and less likely to result from changes in APAs in leg muscles. In fact, since the task 
was performed from a sitting position, the APAs in leg muscles are attenuated as a consequence of: (1) a large 
base of support turning the task of maintaining the CoM projection within boundaries of the base of support 
less challenging; (2) a closer position of the CoM to the base of support; (3) different inertia values because the 
lower part of the body is supported when sitting. The increased number of participants that presented APAs 
seems to be a positive results as decreased APAs in trunk muscles have been described in stroke  patients16,17 and 

Figure 5.  Mean and standard deviation values of displacement of CoP, CoM, and CoP-CoM for AP, ML, and 
AP-ML directions during the reaching phase of turning on the light with and without FES-HAND assistance. 
Between conditions comparisons p values are presented. Statistically significant values were identified in bold 
and with *.

Figure 6.  Mean and standard deviation values of weight-bearing Asymmetry Index during the reaching phase 
of turning on the light with and without FES-HAND assistance. Between conditions comparisons p values are 
presented.
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increased use of the trunk during  reaching60–62 may limit recovery of independent movements of the affected 
arm of stroke  patients18.

The positive findings over global postural control parameters, decurrent from a contralesional focal movement 
assistance with FES-HAND, can be explained by the activation of a proprioceptive map in the contralesional 
side. In fact, FES leads to the recruitment of afferent receptors that modulate spinal and cortical  circuits63,64. 
The FES training by increasing afferent input from muscle spindles and Golgi tendon organs, due to muscle 
 contraction36, causes cortical  reorganization32,33 and somatosensory inputs leading to changes in the cortical 
 excitability34,35. Specifically, it has been demonstrated that FES increases the excitability of areas closely related 
to postural control mechanics during the preparation and initiation of movement and its  correction65, as sup-
plementary motor  areas66 and  cerebellum67.

The improvement of postural control provided by FES-HAND assistance observed in the present study could 
be associated with our previous findings demonstrating increased UL movement quality when reaching tasks 
were assisted by FES-HAND29,30. In fact, feedforward postural control and voluntary arm movement descend-
ing  pathways7 needed to be integrated for effective activity  completion68 without loss of postural control. In this 
perspective, our results seem also to suggest that the increased mechanical, sensory-motor information provided 
by FES-HAND facilitates an implicit learning process for the postural control (see Pohl et al.69 for details on 
implicit learning after stroke). It is important to highlight that the FES parameters were adjusted up to the patient 
participants attribute a score higher than 3 on the PGIC scale. The results obtained demonstrated that the score 
attributed ranged from 3 (a little better, but no noticeable change) to 6 (better, and a definitive improvement that 
as made a real and worthwhile), indicating the FES parameters should be adapted to each patient needs.

Despite FES improved APAs in 60% of the participants, it should be considered that it seemed not to influence 
some participants, as well other postural control variables as EPAs and those related to the reaching phase as CoP 
and CoM displacement, and weight shift. During turning on the light task, a weight shift is needed to move the 
CoM toward the  target11,12, while CoP displacement is needed as counterbalancing procedure in response to the 
reaching  arm70,71. Previous studies have demonstrated that post-stroke subjects have difficulty transferring weight 
for the contralesional limb, particularly when the task is performed with that  limb19,20. Additionally, post-stroke 
subjects present a larger CoP displacement in the lateral direction when reaching straight  forwards21, exceed-
ing the CoM  displacement22,23. Some factors probably contributed to the lack of influence of the FES-HAND 
assistance over these variables. First, in the present study, only the immediate effect of FES-HAND system was 
assessed. We believe that, with FES-HAND assisting training sessions, more participants would develop APAs. 
Second, it should be considered the setup used to perform the task, as well the force plates location. In fact, in 
seated postural control, the trunk mass has to stay within the base of support defined by the buttocks and feet. 
However, the EPAs and APAs, CoP displacement, and weight shift were searched from the signals of two force 
plates located only below the feet. It can be argued that a force plate below the buttocks would probably be more 
sensible for detecting the CoP displacement and weight shift changes when the task was assisted by FES-HAND. 
In this perspective, future studies analyzing the impact of FES-HAND over postural control mechanisms detected 
with a force plate located below the buttocks are required to confirm the inexistence of influence of FES-HAND 
over the mentioned postural control variables.

The results of the present study demonstrated a positive immediate effect of UL FES assistance in postural 
control variables. We believe that this effect would be more pronounced after FES-HAND assisting training ses-
sions, however future studies assessing the effect of FES-based therapy over postural control parameters and its 
relation with clinical scores are needed to confirm this idea.

Conclusion
The findings obtained in the present study demonstrate that FES assistance improves APAs, as the number of 
participants that presented this postural adjustment increased.
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