38 research outputs found

    Monogenic Traits Associated with Structural Variants in Chicken and Horse

    Get PDF
    Domestic animals have rich phenotypic diversity that can be explored to advance our understanding of the relationship between molecular genetics and phenotypic variation. Since the advent of second generation sequencing, it has become easier to identify structural variants and associate them with phenotypic outcomes. This thesis details studies on three such variants associated with monogenic traits. The first studies on Rose-comb in the chicken were published over a century ago, seminally describing Mendelian inheritance and epistatic interaction in animals. Homozygosity for the otherwise dominant Rose-comb allele was later associated with reduced rooster fertility. We show that a 7.38 Mb inversion is causal for Rose-comb, and that two alleles exist for Rose-comb, R1 and R2. A novel genomic context for the gene MNR2 is causative for the comb phenotype, and the bisection of the gene CCDC108 is associated with fertility issues. The recombined R2 allele has intact CCDC108, and normal fertility. The dominant phenotype Greying with Age in horses was previously associated with an intronic duplication in STX17. By utilising second generation sequencing we have examined the genomic region surrounding the duplication in detail, and excluded all other discovered variants as causative for Grey. Dun is the ancestral coat colour of equids, where the individual is mostly pale in colour, but carries intensely pigmented primitive markings, most notably a dorsal stripe. Dun is a dominant trait, and yet most domestic horses are non-dun in colour and intensely pigmented. We show that Dun colour is established by radially asymmetric expression of the transcription factor TBX3 in hair follicles. This results in a microscopic spotting phenotype on the level of the individual hair, giving the impression of pigment dilution. Non-dun colour is caused by two different alleles, non-dun1 and non-dun2, both of which disrupt the TBX3-mediated regulation of pigmentation. Non-dun1 is associated with a SNP variant 5 kb downstream of TBX3, and non-dun2 with a 1.6 kb deletion that overlaps the non-dun1 SNP. Homozygotes for non-dun2 show a more intensely pigmented appearance than horses with one or two non-dun1 alleles. We have also shown by genotyping of ancient DNA that non-dun1 predates domestication

    The Rose-comb Mutation in Chickens Constitutes a Structural Rearrangement Causing Both Altered Comb Morphology and Defective Sperm Motility

    Get PDF
    Rose-comb, a classical monogenic trait of chickens, is characterized by a drastically altered comb morphology compared to the single-combed wild-type. Here we show that Rose-comb is caused by a 7.4 Mb inversion on chromosome 7 and that a second Rose-comb allele arose by unequal crossing over between a Rose-comb and wild-type chromosome. The comb phenotype is caused by the relocalization of the MNR2 homeodomain protein gene leading to transient ectopic expression of MNR2 during comb development. We also provide a molecular explanation for the first example of epistatic interaction reported by Bateson and Punnett 104 years ago, namely that walnut-comb is caused by the combined effects of the Rose-comb and Pea-comb alleles. Transient ectopic expression of MNR2 and SOX5 (causing the Pea-comb phenotype) occurs in the same population of mesenchymal cells and with at least partially overlapping expression in individual cells in the comb primordium. Rose-comb has pleiotropic effects, as homozygosity in males has been associated with poor sperm motility. We postulate that this is caused by the disruption of the CCDC108 gene located at one of the inversion breakpoints. CCDC108 is a poorly characterized protein, but it contains a MSP (major sperm protein) domain and is expressed in testis. The study illustrates several characteristic features of the genetic diversity present in domestic animals, including the evolution of alleles by two or more consecutive mutations and the fact that structural changes have contributed to fast phenotypic evolution

    Mutations in \u3ci\u3eDMRT3\u3c/i\u3e Affect Locomotion in Horses and Spinal Circuit Function in Mice

    Get PDF
    Locomotion in mammals relies on a central pattern-generating circuitry of spinal interneurons established during development that coordinates limb movement. These networks produce left–right alternation of limbs as well as coordinated activation of flexor and extensor muscles. Here we show that a premature stop codon in the DMRT3 gene has a major effect on the pattern of locomotion in horses. The mutation is permissive for the ability to perform alternate gaits and has a favorable effect on harness racing performance. Examination of wild-type and Dmrt3-null mice demonstrates that Dmrt3 is expressed in the dI6 subdivision of spinal cord neurons, takes part in neuronal specification within this subdivision, and is critical for the normal development of a coordinated locomotor network controlling limb movements. Our discovery positions Dmrt3 in a pivotal role for configuring the spinal circuits controlling stride in vertebrates. The DMRT3 mutation has had a major effect on the diversification of the domestic horse, as the altered gait characteristics of a number of breeds apparently require this mutation

    The Crest Phenotype in Chicken Is Associated with Ectopic Expression of HOXC8 in Cranial Skin

    Get PDF
    The Crest phenotype is characterised by a tuft of elongated feathers atop the head. A similar phenotype is also seen in several wild bird species. Crest shows an autosomal incompletely dominant mode of inheritance and is associated with cerebral hernia. Here we show, using linkage analysis and genome-wide association, that Crest is located on the E22C19W28 linkage group and that it shows complete association to the HOXC-cluster on this chromosome. Expression analysis of tissues from Crested and non-crested chickens, representing 26 different breeds, revealed that HOXC8, but not HOXC12 or HOXC13, showed ectopic expression in cranial skin during embryonic development. We propose that Crest is caused by a cis-acting regulatory mutation underlying the ectopic expression of HOXC8. However, the identification of the causative mutation(s) has to await until a method becomes available for assembling this chromosomal region. Crest is unfortunately located in a genomic region that has so far defied all attempts to establish a contiguous sequence

    Copy Number Variation in Intron 1 of SOX5 Causes the Pea-comb Phenotype in Chickens

    Get PDF
    Pea-comb is a dominant mutation in chickens that drastically reduces the size of the comb and wattles. It is an adaptive trait in cold climates as it reduces heat loss and makes the chicken less susceptible to frost lesions. Here we report that Pea-comb is caused by a massive amplification of a duplicated sequence located near evolutionary conserved non-coding sequences in intron 1 of the gene encoding the SOX5 transcription factor. This must be the causative mutation since all other polymorphisms associated with the Pea-comb allele were excluded by genetic analysis. SOX5 controls cell fate and differentiation and is essential for skeletal development, chondrocyte differentiation, and extracellular matrix production. Immunostaining in early embryos demonstrated that Pea-comb is associated with ectopic expression of SOX5 in mesenchymal cells located just beneath the surface ectoderm where the comb and wattles will subsequently develop. The results imply that the duplication expansion interferes with the regulation of SOX5 expression during the differentiation of cells crucial for the development of comb and wattles. The study provides novel insight into the nature of mutations that contribute to phenotypic evolution and is the first description of a spontaneous and fully viable mutation in this developmentally important gene

    Monogenic Traits Associated with Structural Variants in Chicken and Horse : Allelic and Phenotypic Diversity of Visually Appealing Traits

    No full text
    Domestic animals have rich phenotypic diversity that can be explored to advance our understanding of the relationship between molecular genetics and phenotypic variation. Since the advent of second generation sequencing, it has become easier to identify structural variants and associate them with phenotypic outcomes. This thesis details studies on three such variants associated with monogenic traits. The first studies on Rose-comb in the chicken were published over a century ago, seminally describing Mendelian inheritance and epistatic interaction in animals. Homozygosity for the otherwise dominant Rose-comb allele was later associated with reduced rooster fertility. We show that a 7.38 Mb inversion is causal for Rose-comb, and that two alleles exist for Rose-comb, R1 and R2. A novel genomic context for the gene MNR2 is causative for the comb phenotype, and the bisection of the gene CCDC108 is associated with fertility issues. The recombined R2 allele has intact CCDC108, and normal fertility. The dominant phenotype Greying with Age in horses was previously associated with an intronic duplication in STX17. By utilising second generation sequencing we have examined the genomic region surrounding the duplication in detail, and excluded all other discovered variants as causative for Grey. Dun is the ancestral coat colour of equids, where the individual is mostly pale in colour, but carries intensely pigmented primitive markings, most notably a dorsal stripe. Dun is a dominant trait, and yet most domestic horses are non-dun in colour and intensely pigmented. We show that Dun colour is established by radially asymmetric expression of the transcription factor TBX3 in hair follicles. This results in a microscopic spotting phenotype on the level of the individual hair, giving the impression of pigment dilution. Non-dun colour is caused by two different alleles, non-dun1 and non-dun2, both of which disrupt the TBX3-mediated regulation of pigmentation. Non-dun1 is associated with a SNP variant 5 kb downstream of TBX3, and non-dun2 with a 1.6 kb deletion that overlaps the non-dun1 SNP. Homozygotes for non-dun2 show a more intensely pigmented appearance than horses with one or two non-dun1 alleles. We have also shown by genotyping of ancient DNA that non-dun1 predates domestication

    Monogenic Traits Associated with Structural Variants in Chicken and Horse : Allelic and Phenotypic Diversity of Visually Appealing Traits

    No full text
    Domestic animals have rich phenotypic diversity that can be explored to advance our understanding of the relationship between molecular genetics and phenotypic variation. Since the advent of second generation sequencing, it has become easier to identify structural variants and associate them with phenotypic outcomes. This thesis details studies on three such variants associated with monogenic traits. The first studies on Rose-comb in the chicken were published over a century ago, seminally describing Mendelian inheritance and epistatic interaction in animals. Homozygosity for the otherwise dominant Rose-comb allele was later associated with reduced rooster fertility. We show that a 7.38 Mb inversion is causal for Rose-comb, and that two alleles exist for Rose-comb, R1 and R2. A novel genomic context for the gene MNR2 is causative for the comb phenotype, and the bisection of the gene CCDC108 is associated with fertility issues. The recombined R2 allele has intact CCDC108, and normal fertility. The dominant phenotype Greying with Age in horses was previously associated with an intronic duplication in STX17. By utilising second generation sequencing we have examined the genomic region surrounding the duplication in detail, and excluded all other discovered variants as causative for Grey. Dun is the ancestral coat colour of equids, where the individual is mostly pale in colour, but carries intensely pigmented primitive markings, most notably a dorsal stripe. Dun is a dominant trait, and yet most domestic horses are non-dun in colour and intensely pigmented. We show that Dun colour is established by radially asymmetric expression of the transcription factor TBX3 in hair follicles. This results in a microscopic spotting phenotype on the level of the individual hair, giving the impression of pigment dilution. Non-dun colour is caused by two different alleles, non-dun1 and non-dun2, both of which disrupt the TBX3-mediated regulation of pigmentation. Non-dun1 is associated with a SNP variant 5 kb downstream of TBX3, and non-dun2 with a 1.6 kb deletion that overlaps the non-dun1 SNP. Homozygotes for non-dun2 show a more intensely pigmented appearance than horses with one or two non-dun1 alleles. We have also shown by genotyping of ancient DNA that non-dun1 predates domestication

    Monogenic Traits Associated with Structural Variants in Chicken and Horse : Allelic and Phenotypic Diversity of Visually Appealing Traits

    No full text
    Domestic animals have rich phenotypic diversity that can be explored to advance our understanding of the relationship between molecular genetics and phenotypic variation. Since the advent of second generation sequencing, it has become easier to identify structural variants and associate them with phenotypic outcomes. This thesis details studies on three such variants associated with monogenic traits. The first studies on Rose-comb in the chicken were published over a century ago, seminally describing Mendelian inheritance and epistatic interaction in animals. Homozygosity for the otherwise dominant Rose-comb allele was later associated with reduced rooster fertility. We show that a 7.38 Mb inversion is causal for Rose-comb, and that two alleles exist for Rose-comb, R1 and R2. A novel genomic context for the gene MNR2 is causative for the comb phenotype, and the bisection of the gene CCDC108 is associated with fertility issues. The recombined R2 allele has intact CCDC108, and normal fertility. The dominant phenotype Greying with Age in horses was previously associated with an intronic duplication in STX17. By utilising second generation sequencing we have examined the genomic region surrounding the duplication in detail, and excluded all other discovered variants as causative for Grey. Dun is the ancestral coat colour of equids, where the individual is mostly pale in colour, but carries intensely pigmented primitive markings, most notably a dorsal stripe. Dun is a dominant trait, and yet most domestic horses are non-dun in colour and intensely pigmented. We show that Dun colour is established by radially asymmetric expression of the transcription factor TBX3 in hair follicles. This results in a microscopic spotting phenotype on the level of the individual hair, giving the impression of pigment dilution. Non-dun colour is caused by two different alleles, non-dun1 and non-dun2, both of which disrupt the TBX3-mediated regulation of pigmentation. Non-dun1 is associated with a SNP variant 5 kb downstream of TBX3, and non-dun2 with a 1.6 kb deletion that overlaps the non-dun1 SNP. Homozygotes for non-dun2 show a more intensely pigmented appearance than horses with one or two non-dun1 alleles. We have also shown by genotyping of ancient DNA that non-dun1 predates domestication

    Sonic Hedgehog-Signalling Patterns the Developing Chicken Comb as Revealed by Exploration of the Pea-comb Mutation

    No full text
    The genetic basis and mechanisms behind the morphological variation observed throughout the animal kingdom is stillrelatively unknown. In the present work we have focused on the establishment of the chicken comb-morphology byexploring the Pea-comb mutant. The wild-type single-comb is reduced in size and distorted in the Pea-comb mutant. Peacombis formed by a lateral expansion of the central comb anlage into three ridges and is caused by a mutation in SOX5,which induces ectopic expression of the SOX5 transcription factor in mesenchyme under the developing comb. Analysis ofdifferential gene expression identified decreased Sonic hedgehog (SHH) receptor expression in Pea-comb mesenchyme. Byexperimentally blocking SHH with cyclopamine, the wild-type single-comb was transformed into a Pea-comb-likephenotype. The results show that the patterning of the chicken comb is under the control of SHH and suggest that ectopicSOX5 expression in the Pea-comb change the response of mesenchyme to SHH signalling with altered combmorphogenesis as a result. A role for the mesenchyme during comb morphogenesis is further supported by the recentfinding that another comb-mutant (Rose-comb), is caused by ectopic expression of a transcription factor in combmesenchyme. The present study does not only give knowledge about how the chicken comb is formed, it also adds to ourunderstanding how mutations or genetic polymorphisms may contribute to inherited variations in the human face
    corecore