194 research outputs found

    Assessing dental wear in reindeer using geometric morphometrical methods

    Get PDF
    Assessing dental wear is a useful tool for monitoring the interaction between ungulates and their food resources. However, using a univariate measurement for dental wear, like for instance height of the first molar may not capture the variation in dental wear important for the dental functional morphology. We here demonstrate a method for assessing dental wear for ungulates by using geometric morphometrical methods on 11 mandibles from nine Svalbard reindeer (Rangifer tarandus platyrhynchus). Shape measurements were obtained from a combination of fixed and sliding semi-landmarks, and dental wear was estimated using residual variation of the landmarks. The morphometric measurements obtained showed a good fit when compared to subjective scores of dental wear. We conclude that this method may give a more integrated and robust assessment of dental wear than univariate methods, and suggest it to be used as an alternative or in addition to traditional measurements of dental wear.Abstract in Norwegian / Sammendrag:Vurdering av tannslitasje hos rein ved hjelp av geometrisk morfometriske metoder Vurdering av tannslitasje er en anvendbar metode for å overvåke betydningen av miljøet for livshistorien til hovdyr. Imidlertid vil bruk av et enkelt mål, som for eksempel høyde på første molar, ikke nødvendigvis fange opp variasjonen i tannslitasje som er viktig i forhold til tennenes funksjonelle morfologi. I denne artikkelen viser vi hvordan tannslitasje kan vurderes ved å anvende geometrisk morfometriske metoder på 11 underkjever fra ni Svalbardrein (Rangifer tarandus platyrhynchus). Formen på tannrekka ble målt ved hjelp av en kombinasjon av fikserte og glidende semi-landemerker, hvor tannslitasje ble estimert ved å bruke residual variasjon av landemerkene. De morfometriske målene stemte godt overens med subjektiv vurdering av tannslitasje. Vi konkluderer at denne metoden kan gi en mer integrert og robust vurdering av tannslitasje enn univariate metoder, og foreslår den brukt som et alternativ til eller i tillegg til mer tradisjonelle mål på tannslitasje

    Bears are simply voles writ large: social structure determines the mechanisms of intrinsic population regulation in mammals

    Get PDF
    The literature reveals opposing views regarding the importance of intrinsic population regulation in mammals. Different models have been proposed; adding importance to contrasting life histories, body sizes and social interactions. Here we evaluate current theory based on results from two Scandinavian projects studying two ecologically different mammal species with contrasting body sizes and life history traits: the root vole Microtus oeconomus and the brown bear Ursus arctos. We emphasize four inter-linked behavioral aspects—territoriality, dispersal, social inhibition of breeding, and infanticide—that together form a density-dependent syndrome with potentially regulatory effects on population growth. We show that the two species are similar in all four behaviors and thus the overall regulatory syndrome. Females form matrilineal assemblages, female natal dispersal is negatively density dependent and breeding is suppressed in philopatric young females. In both species, male turnover due to extrinsic mortality agents cause infanticide with negative effects on population growth. The sex-biased and density-dependent dispersal patterns promote the formation of matrilineal clusters which, in turn, leads to reproductive suppression with potentially regulatory effects. Hence, we show that intrinsic population regulation interacting with extrinsic mortality agents may occur irrespective of taxon, life history and body size. Our review stresses the significance of a mechanistic approach to understanding population ecology. We also show that experimental model populations are useful to elucidate natural populations of other species with similar social systems. In particular, such experiments should be combined with methodical innovations that may unravel the effects of cryptic intrinsic mechanisms such as infanticid

    The role of colonization in the dynamics of patchy populations of a cyclic vole species

    Get PDF
    This is the postprint version of the article. The published article can be located at www.springerlink.comThe crash phase of vole populations with cyclic dynamics regularly leads to vast areas of uninhabited habitats. Yet although the capacity for cyclic voles to re-colonize such empty space is likely to be large and predicted to have become evolved as a distinct life history trait, the processes of colonization and its effect on the spatio-temporal dynamics have been little studied. Here we report from an experiment with root voles (Microtus oeconomus) specifically targeted at quantifying the process of colonization of empty patches from distant source patches and its resultant effect on local vole deme size variation in a patchy landscape. Three experimental factors: habitat quality (1), predation risk (2) and inter-patch distance (3) were employed among 24 habitat patches in a 100x300 m experimental area. The first born cohort in the spring efficiently colonized almost all empty patches irrespective of the degree of patch isolation and predation risk, but dependent on habitat quality. Just after the initial colonization wave the deme sizes in patches of the same quality were underdispersed relative to Poission variance, indicating regulated (density-dependent) settlement. Towards the end of the breeding season local demographic processes acted to smooth out the initial post colonization differences among source and colonization patches, and among patches of initially different quality. However, at this time demographic stochasticity had also given rise to a large (overdispersed) variation in deme sizes that may have contributed to overshadow the effect of other factors. The results of this experiment confirmed our expectation that the space-filling capacity of voles is large. The costs associated with transience appeared to be so low, at least at the spatial scale considered in this experiment, that such costs is not likely to substantially constrain habitat selection and colonization in the increase phase of cyclic patchy populations.2014-09-3

    New views on how population-intrinsic and community-extrinsic processes interact during the vole population cycles

    Get PDF
    Based on evidence from a series of recent studies linking behaviour to demography in experimental vole populations we propose how intrinsic and extrinsic factors interact through the various phases of the multi-annual population cycles of voles and lemmings. We hypothesise that population growth in the increase phase of the cycle is enhanced by a high degree of space sharing (sociality) among reproductive females who share resource patches, especially during winter. These social females enjoy a high reproductive output due to good resource conditions, and facilitation provided by communal thermoregulation, breeding and defence of weanlings towards infanticidal conspecifics. We hypothesise on the other hand that the crash phase is initiated and enhanced by predation of adult males that leads to a series of cascading events involving infanticidal behaviour by immigrant males, increased mortality of adult social females, and inversely density-dependent and/or disturbance-induced dispersal. These events further enhance predation-induced mortality and thus a negative feed-back loop to the rate of the crash. In this framework we may explain how extrinsic factors such as predation and winter resource distribution contribute to transitions between docile and aggressive behaviours, and how this transition is spatially synchronised by inversely density-dependent dispersal that may act to mediate a rapidly spreading wave throughout the population. We propose that innate differences among rodent species in their propensities for different social organizations also determine their propensity for exhibiting multi-annual cycles as well as other cycle-related phenomena such as shape of the population cycles and spatial synchrony. We provide a set of testable predictions for further empirical evaluation

    First results from an experiment excluding three sizes classes of herbivores from tundra vegetation in southern Yamal, Russia

    Get PDF
    Plant-herbivore relationships are important for the functioning of tundra ecosystems. Here, we report the first results from an exclosure experiment that, something very few studies have done, separated the impact of three sizes of herbivores (small, medium and large) on nine functional groups of plants in the low arctic tundra of the Yamal Peninsula (Russia). Herbivore faeces counts in the exclosures and pictures from automatic cameras proved that the experimental setup worked. The majority of plant groups did not respond to exclusion of herbivores, supporting our expectation that vegetation responses in tundra are generally too slow to be measured during one growing season. The plant groups with highest growth rates and palatability (forbs and grasses) increased their biomass in meadows associated to tall willow shrubs when reindeer were excluded. This result was expected based on studies from other arctic regions. Our results also suggested that willow meadows and forb tundra, which are focal habitat for herbivores, are resilient and have the capacity to increase their biomass over a short term. We expect this experiment to provide valuable information on how different plant functional types and habitats with different growing conditions and importance to herbivores respond to relaxed grazing pressure from a variety of tundra herbivores

    Analysing diet of small herbivores: the efficiency of DNA barcoding coupled with high-throughput pyrosequencing for deciphering the composition of complex plant mixtures

    Get PDF
    Background In order to understand the role of herbivores in trophic webs, it is essential to know what they feed on. Diet analysis is, however, a challenge in many small herbivores with a secretive life style. In this paper, we compare novel (high-throughput pyrosequencing) DNA barcoding technology for plant mixture with traditional microhistological method. We analysed stomach contents of two ecologically important subarctic vole species, Microtus oeconomus and Myodes rufocanus, with the two methods. DNA barcoding was conducted using the P6-loop of the chloroplast trnL (UAA) intron. Results Although the identified plant taxa in the diets matched relatively well between the two methods, DNA barcoding gave by far taxonomically more detailed results. Quantitative comparison of results was difficult, mainly due to low taxonomic resolution of the microhistological method, which also in part explained discrepancies between the methods. Other discrepancies were likely due to biases mostly in the microhistological analysis. Conclusion We conclude that DNA barcoding opens up for new possibilities in the study of plant-herbivore interactions, giving a detailed and relatively unbiased picture of food utilization of herbivores
    • …
    corecore