36 research outputs found

    Intracellular uptake of macromolecules by brain lymphatic endothelial cells during zebrafish embryonic development

    Get PDF
    The lymphatic system controls fluid homeostasis and the clearance of macromolecules from interstitial compartments. In mammals brain lymphatics were only recently discovered, with significant implications for physiology and disease. We examined zebrafish for the presence of brain lymphatics and found loosely connected endothelial cells with lymphatic molecular signature covering parts of the brain without forming endothelial tubular structures. These brain lymphatic endothelial cells (BLECs) derive from venous endothelium, are distinct from macrophages, and are sensitive to loss of Vegfc. BLECs endocytose macromolecules in a selective manner, which can be blocked by injection of mannose receptor ligands. This first report on brain lymphatic endothelial cells in a vertebrate embryo identifies cells with unique features, including the uptake of macromolecules at a single cell level. Future studies will address whether this represents an uptake mechanism that is conserved in mammals and how these cells affect functions of the embryonic and adult brain

    Atypical E2fs Control Lymphangiogenesis through Transcriptional Regulation of Ccbe1 and Flt4

    Get PDF
    Lymphatic vessels are derived from venous endothelial cells and their formation is governed by the Vascular endothelial growth factor C (VegfC)/Vegf receptor 3 (Vegfr3; Flt4) signaling pathway. Recent studies show that Collagen and Calcium Binding EGF domains 1 protein (Ccbe1) enhances VegfC-dependent lymphangiogenesis. Both Ccbe1 and Flt4 have been shown to be indispensable for lymphangiogenesis. However, how these essential players are transcriptionally regulated remains poorly understood. In the case of angiogenesis, atypical E2fs (E2f7 and E2f8) however have been recently shown to function as transcriptional activators for VegfA. Using a genome-wide approach we here identified both CCBE1 and FLT4 as direct targets of atypical E2Fs. E2F7/8 directly bind and stimulate the CCBE1 promoter, while recruitment of E2F7/8 inhibits the FLT4 promoter. Importantly, inactivation of e2f7/8 in zebrafish impaired venous sprouting and lymphangiogenesis with reduced ccbe1 expression and increased flt4 expression. Remarkably, over-expression of e2f7/8 rescued Ccbe1- and Flt4-dependent lymphangiogenesis phenotypes. Together these results identified E2f7/8 as novel in vivo transcriptional regulators of Ccbe1 and Flt4, both essential genes for venous sprouting and lymphangiogenesis

    Sox7 controls arterial specification in conjunction with hey2 and efnb2 function

    Get PDF
    Supramolecular & Biomaterials Chemistr

    Specific fibroblast subpopulations and neuronal structures provide local sources of Vegfc-processing components during zebrafish lymphangiogenesis

    Get PDF
    Proteolytical processing of the growth factor VEGFC through the concerted activity of CCBE1 and ADAMTS3 is required for lymphatic development to occur. How these factors act together in time and space, and which cell types produce these factors is not understood. Here we assess the function of Adamts3 and the related protease Adamts14 during zebrafish lymphangiogenesis and show both proteins to be able to process Vegfc. Only the simultaneous loss of both protein functions results in lymphatic defects identical to vegfc loss-of-function situations. Cell transplantation experiments demonstrate neuronal structures and/or fibroblasts to constitute cellular sources not only for both proteases but also for Ccbe1 and Vegfc. We further show that this locally restricted Vegfc maturation is needed to trigger normal lymphatic sprouting and directional migration. Our data provide a single-cell resolution model for establishing secretion and processing hubs for Vegfc during developmental lymphangiogenesis

    Корекція гемореологічних порушень у хворих на цукровий діабет з використанням низькоінтенсивного лазерного опромінення крові

    Get PDF
    In mammals, the homeodomain transcription factor Prox1 acts as the central regulator of lymphatic cell fate. Its restricted expression in a subset of cardinal vein cells leads to a switch towards lymphatic specification and hence represents a prerequisite for the initiation of lymphangiogenesis. Murine Prox1-null embryos lack lymphatic structures, and sustained expression of Prox1 is indispensable for the maintenance of lymphatic cell fate even at adult stages, highlighting the unique importance of this gene for the lymphatic lineage. Whether this pre-eminent role of Prox1 within the lymphatic vasculature is conserved in other vertebrate classes has remained unresolved, mainly owing to the lack of availability of loss-of-function mutants. Here, we re-examine the role of Prox1a in zebrafish lymphangiogenesis. First, using a transgenic reporter line, we show that prox1a is initially expressed in different endothelial compartments, becoming restricted to lymphatic endothelial cells only at later stages. Second, using targeted mutagenesis, we show that Prox1a is dispensable for lymphatic specification and subsequent lymphangiogenesis in zebrafish. In line with this result, we found that the functionally related transcription factors Coup-TFII and Sox18 are also dispensable for lymphangiogenesis. Together, these findings suggest that lymphatic commitment in zebrafish and mice is controlled in fundamentally different ways

    Meningeal lymphatic endothelial cells fulfill scavenger endothelial cell function and cooperate with microglia in waste removal from the brain

    Get PDF
    Brain lymphatic endothelial cells (BLECs) constitute a group of loosely connected endothelial cells that reside within the meningeal layer of the zebrafish brain without forming a vascular tubular system. BLECs have been shown to readily endocytose extracellular cargo molecules from the brain parenchyma, however, their functional relevance in relation to microglia remains enigmatic. We here compare their functional uptake efficiency for several macromolecules and bacterial components with microglia in a qualitative and quantitative manner in 5-day-old zebrafish embryos. We find BLECs to be significantly more effective in the uptake of proteins, polysaccharides and virus particles as compared to microglia, while larger particles like bacteria are only ingested by microglia but not by BLECs, implying a clear distribution of tasks between the two cell types in the brain area. In addition, we compare BLECs to the recently discovered scavenger endothelial cells (SECs) of the cardinal vein and find them to accept an identical set of substrate molecules. Our data identifies BLECs as the first brain-associated SEC population in vertebrates, and demonstrates that BLECs cooperate with microglia to remove particle waste from the brain.Thrombosis and Hemostasi

    An Anillin-Ect2 Complex Stabilizes Central Spindle Microtubules at the Cortex during Cytokinesis

    Get PDF
    Cytokinesis occurs due to the RhoA-dependent ingression of an actomyosin ring. During anaphase, the Rho GEF (guanine nucleotide exchange factor) Ect2 is recruited to the central spindle via its interaction with MgcRacGAP/Cyk-4, and activates RhoA in the central plane of the cell. Ect2 also localizes to the cortex, where it has access to RhoA. The N-terminus of Ect2 binds to Cyk-4, and the C-terminus contains conserved DH (Dbl homologous) and PH (Pleckstrin Homology) domains with GEF activity. The PH domain is required for Ect2's cortical localization, but its molecular function is not known. In cultured human cells, we found that the PH domain interacts with anillin, a contractile ring protein that scaffolds actin and myosin and interacts with RhoA. The anillin-Ect2 interaction may require Ect2's association with lipids, since a novel mutation in the PH domain, which disrupts phospholipid association, weakens their interaction. An anillin-RacGAP50C (homologue of Cyk-4) complex was previously described in Drosophila, which may crosslink the central spindle to the cortex to stabilize the position of the contractile ring. Our data supports an analogous function for the anillin-Ect2 complex in human cells and one hypothesis is that this complex has functionally replaced the Drosophila anillin-RacGAP50C complex. Complexes between central spindle proteins and cortical proteins could regulate the position of the contractile ring by stabilizing microtubule-cortical interactions at the division plane to ensure the generation of active RhoA in a discrete zone

    A Functional Genomic Screen Combined with Time-Lapse Microscopy Uncovers a Novel Set of Genes Involved in Dorsal Closure of Drosophila Embryos

    Get PDF
    Morphogenesis, the establishment of the animal body, requires the coordinated rearrangement of cells and tissues regulated by a very strictly-determined genetic program. Dorsal closure of the epithelium in the Drosophila melanogaster embryo is one of the best models for such a complex morphogenetic event. To explore the genetic regulation of dorsal closure, we carried out a large-scale RNA interference-based screen in combination with in vivo time-lapse microscopy and identified several genes essential for the closure or affecting its dynamics. One of the novel dorsal closure genes, the small GTPase activator pebble (pbl), was selected for detailed analysis. We show that pbl regulates actin accumulation and protrusion dynamics in the leading edge of the migrating epithelial cells. In addition, pbl affects dorsal closure dynamics by regulating head involution, a morphogenetic process mechanically coupled with dorsal closure. Finally, we provide evidence that pbl is involved in closure of the adult thorax, suggesting its general requirement in epithelial closure processes

    Dynamic endothelial cell rearrangements drive developmental vessel regression

    Get PDF
    Patterning of functional blood vessel networks is achieved by pruning of superfluous connections. The cellular and molecular principles of vessel regression are poorly understood. Here we show that regression is mediated by dynamic and polarized migration of endothelial cells, representing anastomosis in reverse. Establishing and analyzing the first axial polarity map of all endothelial cells in a remodeling vascular network, we propose that balanced movement of cells maintains the primitive plexus under low shear conditions in a metastable dynamic state. We predict that flow-induced polarized migration of endothelial cells breaks symmetry and leads to stabilization of high flow/shear segments and regression of adjacent low flow/shear segments.status: publishe

    Atypical E2fs control lymphangiogenesis through transcriptional regulation of Ccbe1 and Flt4

    No full text
    corecore