10 research outputs found

    Why is order flow so persistent?

    Full text link
    Order flow in equity markets is remarkably persistent in the sense that order signs (to buy or sell) are positively autocorrelated out to time lags of tens of thousands of orders, corresponding to many days. Two possible explanations are herding, corresponding to positive correlation in the behavior of different investors, or order splitting, corresponding to positive autocorrelation in the behavior of single investors. We investigate this using order flow data from the London Stock Exchange for which we have membership identifiers. By formulating models for herding and order splitting, as well as models for brokerage choice, we are able to overcome the distortion introduced by brokerage. On timescales of less than a few hours the persistence of order flow is overwhelmingly due to splitting rather than herding. We also study the properties of brokerage order flow and show that it is remarkably consistent both cross-sectionally and longitudinally.Comment: 42 pages, 15 figure

    Non-Standard Errors

    Get PDF
    In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty: Non-standard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for better reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants

    A Quasi-Experimental Analysis on the Influence of Satisfaction and Complexity on Information Quality Outcomes

    Get PDF
    It has been reported that more than two thirds of users are satisfied with the quality of the data they process at work. However, literature suggests that IQ (information quality) problems are becoming progressively prevailing. We perform a quasi-experimental analysis and investigate both, main effects of satisfaction and complexity as well as interaction effects of them. For information quality outcome we use users’ perception of the importance of IQ dimensions. We find evidence for main effects of both factors as well as an interaction effect on various dimensions of IQ. Satisfaction levels influence the perceived importance of conciseness and security; Complexity levels influence the perception of conciseness; and accuracy and timeliness are found to be influenced by interactional effects. We discuss potential implications of the findings and suggest more experimental research in this domain

    Wavelet decomposition for intra-day volume dynamics

    No full text
    In a follow up to a previous paper where a model was presented for intra-day volume dynamics, we use wavelet decomposition for model parameter estimation. We run Monte-Carlo simulations of the model with these estimated parameters and compare with observed volume curves. This model in its calibrated form can be used for various execution strategies, e.g. in estimation of potential slippage deviations from VWAP benchmarks.Applied mathematical finance, Derivative pricing models, Econophysics, Trading strategies,

    Can a zero-intelligence plus model explain the stylized facts of financial time series data?

    No full text
    Many agent-based models of financial markets have been able to reproduce certain stylized facts that are observed in actual empirical time series data by using "zero-intelligence" agents whose behaviour is largely random in order to ascertain whether certain phenomena arise from market micro-structure as opposed to strategic behaviour. Although these models have been highly successful, it is not surprising that they are unable to explain every stylized fact, and indeed it seems plausible that although some phenomena arise purely from market micro-structure, other phenomena arise from the behaviour of the participating agents, as suggested by more complex agent-based models which use agents endowed with various forms of strategic behaviour. Given that both zero-intelligence and strategic models are each able to explain various phenomena, an interesting question is whether there are hybrid, "zero-intelligence plus" models containing a minimal amount of strategic behaviour that are simultaneously able to explain all of the stylized facts. We conjecture that as we gradually increase the level of strategic behaviour in a zero-intelligence model of a financial market we will obtain an increasingly good fit with the stylized facts of empirical financial time-series data. We test this hypothesis by systematically evaluating several different experimental treatments in which we incrementally add minimalist levels of strategic behaviour to our model, and test the resulting time series of price returns for the following statistical features: fat tails, volatility clustering, persistence and non-Gaussianity. Surprisingly, the resulting "zero-intelligence plus" models do not introduce more realism to the time series, thus supporting other research which conjectures that some phenomena in the financial markets are indeed the result of more sophisticated learning, interaction and adaptation

    Why is order flow so persistent?

    No full text
    Equity order flow is persistent in the sense that buy orders tend to be followed by buy orders and sell orders tend to be followed by sell orders. For equity order flow this persistence is extremely long-ranged, with positive correlations spanning thousands of orders, over time intervals of up to several days. Such persistence in supply and demand is economically important because it influences the market impact as a function of both time and size and because it indicates that the market is in a sense out of equilibrium. Persistence can be caused by two types of behavior: (1) Order splitting, in which a single investor repeatedly places an order of the same sign, or (2) herding, in which different investors place orders of the same sign. We develop a method to decompose the autocorrelation function into splitting and herding components and apply this to order flow data from the London Stock Exchange containing exchange membership identifiers. Members typically act as brokers for other investors, so that it is not clear whether patterns we observe in brokerage data also reflect patterns in the behavior of single investors. To address this problem we develop models for the distortion caused by brokerage and demonstrate that persistence in order flow is overwhelmingly due to order splitting by single investors. At longer time scales we observe that different investors' behavior is anti-correlated. We show that this is due to differences in the response to price-changing vs. non-price-changing market orders.

    Non-Standard Errors

    Get PDF
    In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty: Non-standard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for better reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants

    Non-Standard Errors

    Full text link
    In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in sample estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty: non-standard errors. To study them, we let 164 teams test six hypotheses on the same sample. We find that non-standard errors are sizeable, on par with standard errors. Their size (i) co-varies only weakly with team merits, reproducibility, or peer rating, (ii) declines significantly after peer-feedback, and (iii) is underestimated by participants

    Non-standard errors

    No full text
    corecore