2,199 research outputs found
Crack growth in Ti-8Al-1Mo-1V with real-time and accelerated flight by flight loading
Crack growth in Ti-8Al-lMo-lV was measured and calculated for real time and accelerated simulations of supersonic airplane loading and heating. Crack-growth rates calculated on the assumption that an entire flight could be represented by a single cycle predicted the experimental rates poorly. Calculated crack growth rates were slower than the experimental rates for all tests with flight-by-flight loading. For room temperature accelerated tests, the calculated rates agreed well with the experimental rates; but the calculations became progressively less accurate for progressively more complex test conditions (tests that included elevated temperature)
Fatigue testing device
Anti-buckling assembly prevents buckling of sheet metal fatigue specimen when axial compressive load is applied. It provides for cyclic heating and cooling of specimen during testing. Assembly permits tests at two locations on specimen. Device has ports for visual, optical, or photographic monitoring of fatigue crack propagation in test specimen
Heating and cooling system
A heating and cooling apparatus capable of cyclic heating and cooling of a test specimen undergoing fatigue testing is discussed. Cryogenic fluid is passed through a block clamped to the speciment to cool the block and the specimen. Heating cartridges penetrate the block to heat the block and the specimen to very hot temperaures. Control apparatus is provided to alternatively activate the cooling and heating modes to effect cyclic heating and cooling between very hot and very cold temperatures. The block is constructed of minimal mass to facilitate the rapid temperature changes
Fatigue of titanium alloys in a supersonic-cruise airplane environment
The test programs conducted by several aerospace companies and NASA, summarized in this paper, studied several titanium materials previously identified as having high potential for application to supersonic cruise airplane structures. These studies demonstrate that the temperature (560 K) by itself produced no significant degradation of the materials. However, the fatigue resistance of titanium-alloy structures, in which thermal and loading effects are combined, has been studied insufficiently. The predominant topic for future study of fatigue problems in Mach 3 structures should be the influences of thermal stress particularly, the effects of thermal stress on failure location
Fatigue failure load indicator
An indicator for recording the load at which a fatigue specimen breaks during the last cycle of a fatigue test is described. A load cell is attached to the specimen which is alternately subjected to tension and compression loads. The output of the load cell which is proportional to the load on the specimen is applied to the input of a peak detector. Each time the specimen is subjected to a compression load, means are provided for applying a positive voltage to the rest of the peak detector to reset it. During the last cycle of the tension load the peak detector measures the maximum load on the specimen. Means are provided for disconnecting the load cell from the peak detector when there is a failure in the specimen
Anti-buckling fatigue test assembly
An antibuckling fatigue test assembly is described for holding a metal specimen which is subjected to compression and to rapid cyclical heating and cooling while permitting visual observation. In an illustrative embodiment of this invention, the anti-buckling fatigue test apparatus includes first and second guide members between which the metal specimen is disposed and held, a heating assembly comprising a suitable heating source such as a quartz lamp and a reflecting assembly directing the heat onto the specimen, and a cooling assembly for directing a suitable cooling fluid such as air onto the specimen. The guide members each have a passage to permit the heat to be directed onto the specimen. An opening is provided in the reflecting assembly to permit visual inspection of that region of the specimen adjacent to the opening onto which the heat is directed
Novel Omega-3 Fatty Acid Epoxygenase Metabolite Reduces Kidney Fibrosis.
Cytochrome P450 (CYP) monooxygenases epoxidize the omega-3 polyunsaturated fatty acid (PUFA) docosahexaenoic acid into novel epoxydocosapentaenoic acids (EDPs) that have multiple biological actions. The present study determined the ability of the most abundant EDP regioisomer, 19,20-EDP to reduce kidney injury in an experimental unilateral ureteral obstruction (UUO) renal fibrosis mouse model. Mice with UUO developed kidney tubular injury and interstitial fibrosis. UUO mice had elevated kidney hydroxyproline content and five-times greater collagen positive fibrotic area than sham control mice. 19,20-EDP treatment to UUO mice for 10 days reduced renal fibrosis with a 40%-50% reduction in collagen positive area and hydroxyproline content. There was a six-fold increase in kidney α-smooth muscle actin (α-SMA) positive area in UUO mice compared to sham control mice, and 19,20-EDP treatment to UUO mice decreased α-SMA immunopositive area by 60%. UUO mice demonstrated renal epithelial-to-mesenchymal transition (EMT) with reduced expression of the epithelial marker E-cadherin and elevated expression of multiple mesenchymal markers (FSP-1, α-SMA, and desmin). Interestingly, 19,20-EDP treatment reduced renal EMT in UUO by decreasing mesenchymal and increasing epithelial marker expression. Overall, we demonstrate that a novel omega-3 fatty acid metabolite 19,20-EDP, prevents UUO-induced renal fibrosis in mice by reducing renal EMT
The reaction 2H(p,pp)n in three kinematical configurations at E_p = 16 MeV
We measured the cross sections of the H(p,pp)n breakup reaction at
E=16 MeV in three kinematical configurations: the np final-state
interaction (FSI), the co-planar star (CST), and an intermediate-star (IST)
geometry. The cross sections are compared with theoretical predictions based on
the CD Bonn potential alone and combined with the updated 2-exchange
Tucson-Melbourne three-nucleon force (TM99'), calculated without inclusion of
the Coulomb interaction. The resulting excellent agreement between data and
pure CD Bonn predictions in the FSI testifies to the smallness of three-nucleon
force (3NF) effects as well as the insignificance of the Coulomb force for this
particular configuration and energy. The CST also agrees well whereas the IST
results show small deviations between measurements and theory seen before in
the pd breakup space-star geometries which point to possible Coulomb effects.
An additional comparison with EFT predictions (without 3NF) up to order NLO
shows excellent agreement in the FSI case and a rather similar agreement as for
CD Bonn in the CST and IST situations.Comment: 20 pages, 11 figure
Systematic screens of proteins binding to synthetic microRNA precursors
We describe a new, broadly applicable methodology for screening in parallel interactions of RNA-binding proteins (RBPs) with large numbers of microRNA (miRNA) precursors and for determining their affinities in native form in the presence of cellular factors. The assays aim at identifying pre-miRNAs that are potentially affected by the selected RBP during their biogenesis. The assays are carried out in microtiter plates and use chemiluminescent readouts. Detection of bound RBPs is achieved by protein or tag-specific antibodies allowing crude cell lysates to be used as a source of RBP. We selected 70 pre-miRNAs with phylogenetically conserved loop regions and 25 precursors of other well-characterized miRNAs for chemical synthesis in 3′-biotinylated form. An equivalent set in unmodified form served as inhibitors in affinity determinations. By testing three RBPs known to regulate miRNA biogenesis on this set of pre-miRNAs, we demonstrate that Lin28 and hnRNP A1 from cell lysates or as recombinant protein domains recognize preferentially precursors of the let-7 family, and that KSRP binds strongly to pre-miR-1-
- …
