147 research outputs found

    Health-related quality of life of child and adolescent retinoblastoma survivors in the Netherlands

    Get PDF
    To assess health-related quality of life (HRQoL) in children (8-11 years) and adolescents (12-18 years) who survived retinoblastoma (RB), by means of the KIDSCREEN self-report questionnaire and the proxy-report version. This population-based cross-sectional study (participation rate 70%) involved 65 RB survivors (8-18 years) and their parents. Child/adolescents' and parents' perception of their youth's HRQoL was assessed using the KIDSCREEN, and the results were compared with Dutch reference data. Relations with gender, age, marital status of the parents, and visual acuity were analyzed. RB survivors reported better HRQoL than did the Dutch reference group on the dimensions "moods and emotions" and "autonomy". Increased ratings of HRQoL in RB survivors were mainly seen in perceptions of the younger children and adolescent girls. RB survivors with normal visual acuity scored higher on "physical well-being" than visually impaired survivors. Age was negatively associated with the dimensions "psychological well-being", "self-perception" (according to the child and parent reports) and "parent relations and home life" (according to the child). "Self-perception" was also negatively associated with visual acuity (according to the child). Only parents of young boys surviving RB reported lower on "autonomy" than the reference group, and parents of low visual acuity and blind RB survivors reported higher on "autonomy" than parents of visually unimpaired survivors. Survivors' perceptions and parents' perceptions correlated poorly on all HRQoL dimensions. RB survivors reported a very good HRQoL compared with the Dutch reference group. The perceptions related to HRQoL differ substantially between parents and their children, i.e. parents judge the HRQoL of their child to be relatively poorer. Although the results are reassuring, additional factors of HRQoL that may have more specific relevance, such as psychological factors or coping skills, should be explore

    Lichen planus and Hepatitis C: a case-control study

    Get PDF
    BACKGROUND: The association of lichen planus with hepatitis C (HCV) has been widely reported in the literature. However, there are wide geographical variations in the reported prevalence of HCV infection in patients with lichen planus. This study was conducted to determine the frequency of hepatitis C in Iranian patients with lichen planus at Razi hospital, Tehran. METHODS: During the years 1997 and 1998, 146 cases of lichen planus, 78 (53.1%) women and 69 (46.9%) men were diagnosed. They were diagnosed on the basis of the usual clinical features and, if necessary, typical histological findings. The patients were screened for the presence of anti-HCV antibodies by third generation ELISA and liver function tests. We used the results from screening of blood donors for anti HCV (carried out by Iranian Blood Transfusion Organization) for comparison as the control group. RESULTS: Anti-HCV antibodies were detected in seven cases (4.8%). This was significantly higher than that of the blood donors' antibodies (p < 0.001). The odds ratio was 50.37(21.45–112.24). A statistically significant association was demonstrated between erosive lichen planus and HCV infection. Liver function tests were not significantly different between HCV infected and non-infected patients. CONCLUSION: HCV apears to have an etiologic role for lichen planus in Iranian patients. On the other hand, liver function tests are not good screening means for HCV infection

    The UBA-UIM Domains of the USP25 Regulate the Enzyme Ubiquitination State and Modulate Substrate Recognition

    Get PDF
    USP25m is the muscle isoform of the deubiquitinating (DUB) enzyme USP25. Similarly to most DUBs, data on USP25 regulation and substrate recognition is scarce. In silico analysis predicted three ubiquitin binding domains (UBDs) at the N-terminus: one ubiquitin-associated domain (UBA) and two ubiquitin-interacting motifs (UIMs), whereas no clear structural homology at the extended C-terminal region outside the catalytic domains were detected. In order to asses the contribution of the UBDs and the C-terminus to the regulation of USP25m catalytic activity, ubiquitination state and substrate interaction, serial and combinatorial deletions were generated. Our results showed that USP25m catalytic activity did not strictly depend on the UBDs, but required a coiled-coil stretch between amino acids 679 to 769. USP25 oligomerized but this interaction did not require either the UBDs or the C-terminus. Besides, USP25 was monoubiquitinated and able to autodeubiquitinate in a possible loop of autoregulation. UBDs favored the monoubiquitination of USP25m at the preferential site lysine 99 (K99). This residue had been previously shown to be a target for SUMO and this modification inhibited USP25 activity. We showed that mutation of K99 clearly diminished USP25-dependent rescue of the specific substrate MyBPC1 from proteasome degradation, thereby supporting a new mechanistic model, in which USP25m is regulated through alternative conjugation of ubiquitin (activating) or SUMO (inhibiting) to the same lysine residue (K99), which may promote the interaction with distinct intramolecular regulatory domains

    Analysis of osteoarthritis in a mouse model of the progeroid human DNA repair syndrome trichothiodystrophy

    Get PDF
    The increasing average age in developed societies is paralleled by an increase in the prevalence of many age-related diseases such as osteoarthritis (OA), which is characterized by deformation of the joint due to cartilage damage and increased turnover of subchondral bone. Consequently, deficiency in DNA repair, often associated with premature aging, may lead to increased pathology of these two tissues. To examine this possibility, we analyzed the bone and cartilage phenotype of male and female knee joints derived from 52- to 104-week-old WT C57Bl/6 and trichothiodystrophy (TTD) mice, who carry a defect in the nucleotide excision repair pathway and display many features of premature aging. Using micro-CT, we found bone loss in all groups of 104-week-old compared to 52-week-old mice. Cartilage damage was mild to moderate in all mice. Surprisingly, female TTD mice had less cartilage damage, proteoglycan depletion, and osteophytosis compared to WT controls. OA severity in males did not significantly differ between genotypes, although TTD males had less osteophytosis. These results indicate that in premature aging TTD mice age-related changes in cartilage were not more severe compared to WT mice, in striking contrast with bone and many other tissues. This segmental aging character may be explained by a difference in vasculature and thereby oxygen load in cartilage and bone. Alternatively, a difference in impact of an anti-aging response, previously found to be triggered by accumulation of DNA damage, might help explain why female mice were protected from cartilage damage. These findings underline the exceptional segmental nature of progeroid conditions and provide an explanation for pro- and anti-aging features occurring in the same individual

    Co-evolutionary dynamics of collective action with signaling for a quorum

    Get PDF
    Collective signaling for a quorum is found in a wide range of organisms that face collective action problems whose successful solution requires the participation of some quorum of the individuals present. These range from humans, to social insects, to bacteria. The mechanisms involved, the quorum required, and the size of the group may vary. Here we address the general question of the evolution of collective signaling at a high level of abstraction. We investigate the evolutionary dynamics of a population engaging in a signaling N-person game theoretic model. Parameter settings allow for loners and cheaters, and for costly or costless signals. We find a rich dynamics, showing how natural selection, operating on a population of individuals endowed with the simplest strategies, is able to evolve a costly signaling system that allows individuals to respond appropriately to different states of Nature. Signaling robustly promotes cooperative collective action, in particular when coordinated action is most needed and difficult to achieve. Two different signaling systems may emerge depending on Nature's most prevalent states.Funding: This research was supported by FEDER through POFC - COMPETE, FCT-Portugal through grants SFRH/BD/86465/2012, PTDC/MAT/122897/2010, EXPL/EEI-SII/2556/2013, and by multi-annual funding of CMAF-UL, CBMA-UM and INESC-ID (under the projects PEst-OE/BIA/UI4050/2014 and UID/CEC/50021/2013) provided by FCT-Portugal, and by Fundacao Calouste Gulbenkian through the "Stimulus to Research" program for young researchers. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    Tyrosine kinase inhibitors reprogramming immunity in renal cell carcinoma: rethinking cancer immunotherapy

    Get PDF
    Review article[Abstract] The immune system regulates angiogenesis in cancer by way of both pro- and antiangiogenic activities. A bidirectional link between angiogenesis and the immune system has been clearly demonstrated. Most antiangiogenic molecules do not inhibit only VEGF signaling pathways but also other pathways which may affect immune system. Understanding of the role of these pathways in the regulation of immunosuppressive mechanisms by way of specific inhibitors is growing. Renal cell carcinoma (RCC) is an immunogenic tumor in which angiogenesis and immunosuppression work hand in hand, and its growth is associated with impaired antitumor immunity. Given the antitumor activity of selected TKIs in metastatic RCC (mRCC), it seems relevant to assess their effect on the immune system. The confirmation that TKIs improve cell cytokine response in mRCC provides a basis for the rational combination and sequential treatment of TKIs and immunotherapy

    Genome-Wide Analysis of Transcriptional Reprogramming in Mouse Models of Acute Myeloid Leukaemia

    Get PDF
    Acute leukaemias are commonly caused by mutations that corrupt the transcriptional circuitry of haematopoietic stem/progenitor cells. However, the mechanisms underlying large-scale transcriptional reprogramming remain largely unknown. Here we investigated transcriptional reprogramming at genome-scale in mouse retroviral transplant models of acute myeloid leukaemia (AML) using both gene-expression profiling and ChIP-sequencing. We identified several thousand candidate regulatory regions with altered levels of histone acetylation that were characterised by differential distribution of consensus motifs for key haematopoietic transcription factors including Gata2, Gfi1 and Sfpi1/Pu.1. In particular, downregulation of Gata2 expression was mirrored by abundant GATA motifs in regions of reduced histone acetylation suggesting an important role in leukaemogenic transcriptional reprogramming. Forced re-expression of Gata2 was not compatible with sustained growth of leukaemic cells thus suggesting a previously unrecognised role for Gata2 in downregulation during the development of AML. Additionally, large scale human AML datasets revealed significantly higher expression of GATA2 in CD34+ cells from healthy controls compared with AML blast cells. The integrated genome-scale analysis applied in this study represents a valuable and widely applicable approach to study the transcriptional control of both normal and aberrant haematopoiesis and to identify critical factors responsible for transcriptional reprogramming in human cancer
    • …
    corecore