693 research outputs found

    Massive Star Evolution: Nucleosynthesis and Nuclear Reaction Rate Uncertainties

    Get PDF
    We present a nucleosynthesis calculation of a 25 solar mass star of solar composition that includes all relevant isotopes up to polonium. In particular, all stable isotopes and necessary nuclear reaction rates are covered. We follow the stellar evolution from hydrogen burning till iron core collapse and simulate the explosion using a ``piston'' approach. We discuss the influence of two key nuclear reaction rates, C12(a,g) and Ne22(a,n), on stellar evolution and nucleosynthesis. The former significantly influences the resulting core sizes (iron, silicon, oxygen) and the overall presupernova structure of the star. It thus has significant consequences for the supernova explosion itself and the compact remnant formed. The later rate considerably affects the s-process in massive stars and we demonstrate the changes that different currently suggested values for this rate cause.Comment: 6 pages, including 4 PostScript figures, to appear in Proc. "Astronomy with Radioactivities III", New Astronomy Review

    Direct cross section measurement for the 18O(p,Îł)19F reaction at astrophysical energies at LUNA

    Get PDF
    18 O ( p, Îł ) 19 F plays an important role in the AGB star scenarios. The low energy cross section could be influenced by a hypothetical low energy resonance at 95 keV and by the tails of the higher energy broad states. The 95 keV resonance lies in the energy window corresponding to the relevant stellar temperature range of 40-50 MK.Measurements of the direct cross section were performed at the Laboratory for Underground Nuclear Astrophysics (LUNA), including the unobserved low energy resonance, the higher energy resonances and the non-resonant component, taking advantage of the extremely low environmental background. Here we report on the experimental setup and the status of the analysis

    Development of Classification Models for Identifying “True” P-glycoprotein (P-gp) Inhibitors Through Inhibition, ATPase Activation and Monolayer Efflux Assays

    Get PDF
    P-glycoprotein (P-gp) is an efflux pump involved in the protection of tissues of several organs by influencing xenobiotic disposition. P-gp plays a key role in multidrug resistance and in the progression of many neurodegenerative diseases. The development of new and more effective therapeutics targeting P-gp thus represents an intriguing challenge in drug discovery. P-gp inhibition may be considered as a valid approach to improve drug bioavailability as well as to overcome drug resistance to many kinds of tumours characterized by the over-expression of this protein. This study aims to develop classification models from a unique dataset of 59 compounds for which there were homogeneous experimental data on P-gp inhibition, ATPase activation and monolayer efflux. For each experiment, the dataset was split into a training and a test set comprising 39 and 20 molecules, respectively. Rational splitting was accomplished using a sphere-exclusion type algorithm. After a two-step (internal/external) validation, the best-performing classification models were used in a consensus predicting task for the identification of compounds named as “true” P-gp inhibitors, i.e., molecules able to inhibit P-gp without being effluxed by P-gp itself and simultaneously unable to activate the ATPase function

    The water safety plan approach: Application to small drinking-water systems—case studies in salento (south italy)

    Get PDF
    none6noBackground: The quality of water for human consumption is an objective of fundamental importance for the defense of public health. Since the management of networks involves many problems of control and efficiency of distribution, the Water Safety Plan (WSP) was introduced to address these growing problems. Methods: WSP was applied to three companies in which the water resource assumes central importance: five water kiosks, a third-range vegetable processing company, and a residence and care institution. In drafting the plan, the terms and procedures designed and tested for the management of urban distribution systems were applied to safeguard the resource over time. Results: The case studies demonstrated the reliability of the application of the model even to small drinking-water systems, even though it involved a greater effort in analyzing the incoming water, the local intended use, and the possibilities for managing the containment of the dangers to which it is exposed. This approach demonstrates concrete effectiveness in identifying and mitigating the dangers of altering the quality of water. Conclusions: Thanks to the WSP applied to small drinking-water systems, we can move from management that is focused mainly on verifying the conformity of the finished product to the creation of a global risk assessment and management system that covers the entire water supply chain.openSerio F.; Martella L.; Imbriani G.; Idolo A.; Bagordo F.; De Donno A.Serio, F.; Martella, L.; Imbriani, G.; Idolo, A.; Bagordo, F.; De Donno, A

    Cross section measurement of N 14 ( p , Îł ) O 15 in the CNO cycle

    Get PDF
    Background: The CNO cycle is the main energy source in stars more massive than our sun; it defines the energy production and the cycle time that lead to the lifetime of massive stars, and it is an important tool for the determination of the age of globular clusters. In our sun about 1.6% of the total solar neutrino flux comes from the CNO cycle. The largest uncertainty in the prediction of this CNO flux from the standard solar model comes from the uncertainty in the ^{14}\mathrm{N}(p,\ensuremath{\gamma})^{15}\mathrm{O} reaction rate; thus, the determination of the cross section at astrophysical temperatures is of great interest.Purpose: The total cross section of the ^{14}\mathrm{N}(p,\ensuremath{\gamma})^{15}\mathrm{O} reaction has large contributions from the transitions to the Ex=6.79MeV{E}_{x}=6.79\phantom{\rule{4pt}{0ex}}\mathrm{MeV} excited state and the ground state of 15O^{15}\mathrm{O}. The Ex=6.79MeV{E}_{x}=6.79\phantom{\rule{4pt}{0ex}}\mathrm{MeV} transition is dominated by radiative direct capture, while the ground state is a complex mixture of direct and resonance capture components and the interferences between them. Recent studies have concentrated on cross-section measurements at very low energies, but broad resonances at higher energy may also play a role. A single measurement has been made that covers a broad higher-energy range but it has large uncertainties stemming from uncorrected summing effects. Furthermore, the extrapolations of the cross section vary significantly depending on the data sets considered. Thus, new direct measurements have been made to improve the previous high-energy studies and to better constrain the extrapolation.Methods: Measurements were performed at the low-energy accelerator facilities of the nuclear science laboratory at the University of Notre Dame. The cross section was measured over the proton energy range from Ep=0.7{E}_{p}=0.7 to 3.6 MeV for both the ground state and the Ex=6.79MeV{E}_{x}=6.79\phantom{\rule{4.pt}{0ex}}\mathrm{MeV} transitions at {\ensuremath{\theta}}_{\text{lab}}={0}^{\ensuremath{\circ}}, {45}^{\ensuremath{\circ}}, {90}^{\ensuremath{\circ}}, {135}^{\ensuremath{\circ}}, and {150}^{\ensuremath{\circ}}. Both TiN and implanted-14N^{14}\mathrm{N} targets were utilized. \ensuremath{\gamma} rays were detected by using an array of high-purity germanium detectors.Results: The excitation function as well as angular distributions of the two transitions were measured. A multichannel RR-matrix analysis was performed with the present data and is compared with previous measurements. The analysis covers a wide energy range so that the contributions from broad resonances and direct capture can be better constrained.Conclusion: The astrophysical SS factors of the Ex=6.79MeV{E}_{x}=6.79\phantom{\rule{4.pt}{0ex}}\mathrm{MeV} and the ground-state transitions were extrapolated to low energies with the newly measured differential-cross-section data. Based on the present work, the extrapolations yield {S}_{6.79}(0)=1.29\ifmmode\pm\else\textpm\fi{}0.04(\mathrm{stat})\ifmmode\pm\else\textpm\fi{}0.09(\mathrm{syst})\phantom{\rule{4pt}{0ex}}\mathrm{keV}\phantom{\rule{0.16em}{0ex}}\mathrm{b} and {S}_{\text{g.s.}}(0)=0.42\ifmmode\pm\else\textpm\fi{}0.04(\mathrm{stat})\phantom{\rule{4pt}{0ex}}\mathrm{keV}\phantom{\rule{0.16em}{0ex}}\mathrm{b}. While significant improvement and consistency is found in modeling the Ex=6.79MeV{E}_{x}=6.79\phantom{\rule{4.pt}{0ex}}\mathrm{MeV} transition, large inconsistencies in both the RR-matrix fitting and the low-energy data are reaffirmed for the ground-state transition. Reflecting this, a systematic uncertainty of {}_{\ensuremath{-}0.19}^{+0.09}\phantom{\rule{4pt}{0ex}}\mathrm{keV}\phantom{\rule{0.16em}{0ex}}\mathrm{b} is recommended for the ground-state transition

    Measurement of 1323 and 1487 keV resonances in 15N({\alpha}, {\gamma})19F with the recoil separator ERNA

    Get PDF
    The origin of fluorine is a widely debated issue. Nevertheless, the ^{15}N({\alpha},{\gamma})^{19}F reaction is a common feature among the various production channels so far proposed. Its reaction rate at relevant temperatures is determined by a number of narrow resonances together with the DC component and the tails of the two broad resonances at E_{c.m.} = 1323 and 1487 keV. Measurement through the direct detection of the 19F recoil ions with the European Recoil separator for Nuclear Astrophysics (ERNA) were performed. The reaction was initiated by a 15N beam impinging onto a 4He windowless gas target. The observed yield of the resonances at Ec.m. = 1323 and 1487 keV is used to determine their widths in the {\alpha} and {\gamma} channels. We show that a direct measurement of the cross section of the ^{15}N({\alpha},{\gamma})^{19}F reaction can be successfully obtained with the Recoil Separator ERNA, and the widths {\Gamma}_{\gamma} and {\Gamma}_{\alpha} of the two broad resonances have been determined. While a fair agreement is found with earlier determination of the widths of the 1487 keV resonance, a significant difference is found for the 1323 keV resonance {\Gamma}_{\alpha} . The revision of the widths of the two more relevant broad resonances in the 15N({\alpha},{\gamma})19F reaction presented in this work is the first step toward a more firm determination of the reaction rate. At present, the residual uncertainty at the temperatures of the ^{19}F stellar nucleosynthesis is dominated by the uncertainties affecting the Direct Capture component and the 364 keV narrow resonance, both so far investigated only through indirect experiments.Comment: 8 pages, 11 figures. Accepted for publication in PR

    Feasibility of low energy radiative capture experiments at the LUNA underground accelerator facility

    Full text link
    The LUNA (Laboratory Underground for Nuclear Astrophysics) facility has been designed to study nuclear reactions of astrophysical interest. It is located deep underground in the Gran Sasso National Laboratory, Italy. Two electrostatic accelerators, with 50 and 400 kV maximum voltage, in combination with solid and gas target setups allowed to measure the total cross sections of the radiative capture reactions 2^2H(p,Îł\gamma)3He and 14^{14}N(p,Îł\gamma)15^{15}O within their relevant Gamow peaks. We report on the gamma background in the Gran Sasso laboratory measured by germanium and bismuth germanate detectors, with and without an incident proton beam. A method to localize the sources of beam induced background using the Doppler shift of emitted gamma rays is presented. The feasibility of radiative capture studies at energies of astrophysical interest is discussed for several experimental scenarios.Comment: Submitted to Eur. Phys. J.

    The in vivo effect of chelidonine on the stem cell system of planarians

    Get PDF
    The presence of adult pluripotent stem cells and the amazing regenerative capabilities make planarian flatworms an extraordinary experimental model to assess in vivo the effects of substances of both natural and synthetic origin on stem cell dynamics. This study focuses on the effects of chelidonine, an alkaloid obtained from Chelidonium majus. The expression levels of molecular markers specific for stem or differentiated cells were compared in chelidonine-treated and control planarians. The use of these markers demonstrates that chelidonine produces in vivo a significant anti-proliferative effect on planarian stem cells in a dosedependent fashion. In response to chelidonine treatment mitotic abnormalities were also observed and the number of cells able to proceed to anaphase/telophase appeared significantly reduced with respect to the controls. Our results support the possibility that chelidonine acts on cell cycle progression by inhibition of tubulin polymerization. These studies provide a basis for preclinical evaluation in vivo of the effects of chelidonine on physiologically proliferating stem cells
    • …
    corecore