1,712 research outputs found

    Supermassive Black Hole Mass Regulated by Host Galaxy Morphology

    Full text link
    We investigated the relationship between supermassive black hole (SMBH) mass and host starburst luminosity in Seyfert galaxies and Palomar-Green QSOs, focusing on the host galaxy morphology. Host starburst luminosity was derived from the 11.3 micron polycyclic aromatic hydrocarbon luminosity. We found that the SMBH masses of elliptical-dominated host galaxies are more massive than those of disk-dominated host galaxies statistically. We also found that the SMBH masses of disk-dominated host galaxies seem to be suppressed even under increasing starburst luminosity. These findings imply that final SMBH mass is strongly regulated by host galaxy morphology. This can be understood by considering the radiation drag model as the SMBH growth mechanism, taking into account the radiation efficiency of the host galaxy.Comment: 6 pages, 1 figure; accepted for publication in MNRA

    The X-ray emission from Young Stellar Objects in the rho Ophiuchi cloud core as seen by XMM-Newton

    Full text link
    We observed the main core F of the rho Ophiuchi cloud, an active star-forming region located at ~140 pc, using XMM-Newton with an exposure of 33 ks. We detect 87 X-ray sources within the 30' diameter field-of-view of the it EPIC imaging detector array. We cross-correlate the positions of XMM-Newton X-ray sources with previous X-ray and infrared (IR) catalogs: 25 previously unknown X-ray sources are found from our observation; 43 X-ray sources are detected by both XMM-Newton and Chandra; 68 XMM-Newton X-ray sources have 2MASS near-IR counterparts. We show that XMM-Newton and Chandra have comparable sensitivity for point source detection when the exposure time is set to ~30 ks for both. We detect X-ray emission from 7 Class I sources, 26 Class II sources, and 17 Class III sources. The X-ray detection rate of Class I sources is very high (64 %), which is consistent with previous Chandra observations in this area. We propose that 15 X-ray sources are new class III candidates, which doubles the number of known Class III sources, and helps to complete the census of YSOs in this area. We also detect X-ray emission from two young bona fide brown dwarfs, GY310 and GY141, out of three known in the field of view. GY141 appears brighter by nearly two orders of magnitude than in the Chandra observation. We extract X-ray light curves and spectra from these YSOs, and find some of them showed weak X-ray flares. We observed an X-ray flare from the bona fide brown dwarf GY310. We find as in the previous Chandra observation of this region that Class I sources tend to have higher temperatures and heavier X-ray absorptions than Class II and III sources.Comment: 17 pages, 13 figures, 4 tables, accepted by A&

    Hyperlink Management System and ID Converter System: enabling maintenance-free hyperlinks among major biological databases

    Get PDF
    Hyperlink Management System (HMS) is a system for automatically updating and maintaining hyperlinks among major public databases in the field of life science. We daily create corresponding tables of data IDs of major databases for human genes and proteins, and provide a CGI-program that returns correct and up-to-date URLs for showing data of various databases that correspond to user-specified IDs. The HMS can deal with various IDs: accession numbers of International Nucleotide Sequence Databases, HUGO Gene Symbols and IDs of UniProt, PDB, H-InvDB and others, and it can return URLs of various databases: H-InvDB, HUGO Gene Nomenclature Committee Database, NCBI Entrez Gene, UniProt, PDB and others. For example, 23 297 pages of Locus view of H-InvDB are reachable by using HUGO Gene Symbols through the HMS. Not only the CGI-program, the HMS provides a Web page for finding and opening URLs of these databases. Although hyperlinking is an effective way of relating biological data among different databases, updating hyperlinks has been a laborious work. The HMS fully automates the job, enabling maintenance-free hyperlinks. We also developed the ID Converter System (ICS) for simply converting data IDs by using corresponding tables in the HMS. The HMS and ICS are freely available at http://biodb.jp/

    Subaru Spectroscopy and Spectral Modeling of Cygnus A

    Get PDF
    We present high angular resolution (∌\sim0.5â€Č^\primeâ€Č^\prime) MIR spectra of the powerful radio galaxy, Cygnus A, obtained with the Subaru telescope. The overall shape of the spectra agree with previous high angular resolution MIR observations, as well as previous Spitzer spectra. Our spectra, both on and off nucleus, show a deep silicate absorption feature. The absorption feature can be modeled with a blackbody obscured by cold dust or a clumpy torus. The deep silicate feature is best fit by a simple model of a screened blackbody, suggesting foreground absorption plays a significant, if not dominant role, in shaping the spectrum of Cygnus A. This foreground absorption prevents a clear view of the central engine and surrounding torus, making it difficult to quantify the extent the torus attributes to the obscuration of the central engine, but does not eliminate the need for a torus in Cygnus A

    The structure of the Au(111)/methylthiolate interface : new insights from near-edge X-ray absorption spectroscopy and X-ray standing waves

    Get PDF
    The local structure of the Au(111)([square root of]3×[square root of]3)R30°-methylthiolate surface phase has been investigated by S K-edge near-edge s-ray absorption fine structure (NEXAFS) both experimentally and theoretically and by experimental normal-incidence x-ray standing waves (NIXSW) at both the C and S atomic sites. NEXAFS shows not only excitation into the intramolecular sigma* S–C resonance but also into a sigma* S–Au orbital perpendicular to the surface, clearly identifying the local S headgroup site as atop a Au atom. Simulations show that it is not possible, however, to distinguish between the two possible adatom reconstruction models; a single thiolate species atop a hollow-site Au adatom or a dithiolate moiety comprising two thiolate species bonded to a bridge-bonded Au adatom. Within this dithiolate moiety a second sigma* S–Au orbital that lies near parallel to the surface has a higher energy that overlaps that of the sigma* S–C resonance. The new NIXSW data show the S–C bond to be tilted by 61° relative to the surface normal, with a preferred azimuthal orientation in , corresponding to the intermolecular nearest-neighbor directions. This azimuthal orientation is consistent with the thiolate being atop a hollow-site Au adatom, but not consistent with the originally proposed Au-adatom-dithiolate moiety. However, internal conformational changes within this species could, perhaps, render this model also consistent with the experimental data

    A Study of the Populations of X-ray Sources in the Small Magellanic Cloud with ASCA

    Get PDF
    The Advanced Satellite for Cosmology and Astrophysics (ASCA) has made multiple observations of the Small Magellanic Cloud (SMC). X-ray mosaic images in the soft (0.7--2.0 keV) and hard (2.0--7.0 keV) bands are separately constructed, and the latter provides the first hard X-ray view of the SMC. We extract 39 sources from the two-band images with a criterion of S/N>5, and conduct timing and spectral analyses for all of these sources. Coherent pulsations are detected from 12 X-ray sources; five of which are new discoveries. Most of the 12 X-ray pulsars are found to exhibit long-term flux variabilities, hence they are likely to be X-ray binary pulsars (XBPs). On the other hand, we classify four supernova remnants (SNRs) as thermal SNRs, because their spectra exhibit emission lines from highly ionized atoms. We find that XBPs and thermal SNRs in the SMC can be clearly separated by their hardness ratio (the ratio of the count rate between the hard and soft bands). Using this empirical grouping, we find many XBP candidates in the SMC, although no pulsations have yet been detected from these sources. Possible implications on the star-formation history and evolution of the SMC are presented by a comparison of the source populations in the SMC and our Galaxy.Comment: 11 pages, 39 Figures, to be published in ApJ Supplement. Tables (body and figures also) are available at http://www-cr.scphys.kyoto-u.ac.jp/member/jun/job

    Spectral decomposition of starbursts and AGNs in 5-8 micron Spitzer IRS spectra of local ULIRGs

    Full text link
    We present an analysis of the 5-8 micron Spitzer-IRS spectra of a sample of 68 local Ultraluminous Infrared Galaxies (ULIRGs). Our diagnostic technique allows a clear separation of the active galactic nucleus (AGN) and starburst (SB) components in the observed mid-IR emission, and a simple analytic model provides a quantitative estimate of the AGN/starburst contribution to the bolometric luminosity. We show that AGNs are ~30 times brighter at 6 micron than starbursts with the same bolometric luminosity, so that even faint AGNs can be detected. Star formation events are confirmed as the dominant power source for extreme infrared activity, since ~85% of ULIRG luminosity arises from the SB component. Nonetheless an AGN is present in the majority (46/68) of our sources.Comment: 5 Pages, 3 figures. MNRAS Letters, Accepte
    • 

    corecore