192 research outputs found

    Data-efficient methods applied to general spectral image capture

    Get PDF
    Commercialization of spectral imaging for color reproduction will require low bandwidth but highly accurate spectral image acquisition systems. Self-adapting systems are proposed as potential solutions. Such systems perform spectral content analysis on an encountered scene, reacting to the analysis by configuring efficient high quality spectral reconstruction. An experiment is reported comparing scene-derived spectral estimation transforms to static global transforms in multi-channel imaging simulations. For noisefree simulations, the adaptive approach showed clear benefit in terms of colorimetric and spectral statistics. When noise was added, the adaptive method continued to be superior in terms of spectral evaluations, but colorimetric degradation for the adaptive approach exceeded that of the static. This provided additional evidence that spectral reconstruction methods should reference psychometrics as an integral part of spectral error management

    Comparative study of spectral reflectance estimation based on broad-band imaging systems

    Get PDF
    We have been practicing spectral color estimation for museum artwork imaging and spectral estimation. We have had success using both narrow-band imaging based on a liquid crystal tunable filter (LCTF) and various broad-band imaging approaches using the same monochromatic digital camera system. Details about our spectral color imaging system description, imaging procedures and the performance of spectral estimation methods used can be found in our previous technical reports.1,2 In previous reports we focused in methods of reconstruction from narrow-band images using LCTF, while we only reported preliminary analyses of reconstruction from wide-band images using six glass filtered images and a red-green-blue filter combined with and without a light-blue Wratten filter. There are practical advantages of using commercially available RGB cameras with this method if such a broad-band image acquisition system has sufficient estimation accuracy. We previously captured two sets of six broad-band images obtained by glass filters mounted in a wheel with glass filters, with and without extra absorption filter.1 In this report, we expand the analyses of spectral estimation using wide-band images by switching the red filter with a long-red filter in order to test the concept of using long-red, green and blue channels of the camera combined with and without lightblue absorption filter. The performance of this new configuration is compared to the imaging using all six filters of the filter wheel, as well as the configuration using six channels derived from red-green-blue filters without and with absorption filter

    Comparison of the accuracy of various transformations from multi-band images to reflectance spectra

    Get PDF
    This report provides a comparative study of the spectral and colorimetric accuracy of various transformations from multi-band digital signals to spectral reflectance. The multiband channels were obtained by multi-channel visible-spectral imaging (MVSI) using a monochrome CCD and two different filtering systems. In the first system we used a liquid-crystal tunable filter (LCTF) capturing 31 narrow-band channels. We also used a filter wheel with a set of 6 glass filters imaging with and without an extra Wratten absorption filter giving a total of 12 channels. Four different mathematical methods were tested to derive reflectance spectra from digital signals: pseudo-inverse, eigenvector analysis, modified-discrete sine transformation (MDST) and non-negative least squares (NNLS). We also considered two different approaches to sampling the digital signals; in one approach we averaged the digital counts

    Imaging at the National Gallery of Art, Washington D.C.

    Get PDF
    This report provides the description of a recent fine art spectral imaging session at the National Gallery of Art, Washington D. C. This report also includes subsequent evaluation of the performance of our multi-channel visible-spectral imaging (MVSI) system. The multi-band channels analyzed in this report were obtained using a monochrome CCD and a liquid-crystal tunable filter (LCTF) capturing 31 narrow-band channels. The results showed the effectiveness of our designed spectral imaging when used at a museum environment to capture spectral imaging of fine art paintings. Furthermore, we also verified the dependence of the performance on the selection of the characterization target. Various combinations of imaged targets were used to generate the transformation. Among our characterization target combinations, the one that includes GretagMacbeth ColorChecker DC combined with a target of blue pigments was selected considering its impact on spectral estimation performance in reconstructing painting pigments (Gamblin target). This result points directions to a design of a universal target for painting spectral imaging and estimation

    Comparative study of shell shape and muscle scar pigmentation in the closely related cupped oysters Crassostrea angulata, C-gigas and their reciprocal hybrids

    Get PDF
    The taxonomic status of the cupped oysters Crassostrea angulata and C. gigas has received considerable attention in the last decades. Based on larval shell morphology, experimental hybridization, allozymes and nuclear DNA studies several authors have considered these two taxa as being synonymous. However, mitochondrial data showed clear genetic differences between the two taxa. In addition, microsatellite- based studies and cytogenetic studies have also provided evidence that supports their differentiation. Considerable differences have also been observed at the phenotypic level in terms of growth rate and ecophysiological parameters. In the present study, C. angulata from Sado estuary ( Portugal) and C. gigas from Seudre estuary ( France) were collected and factorial crosses were performed. Juveniles of the different progenies were reared in Ria Formosa ( Portugal) under common conditions to determine if they exhibited differences in shell shape and in pigmentation of the adductor muscle scar. Significant morphometric differences between C. angulata and C. gigas progenies were indicated by univariate and multivariate analyses. Univariate analysis of size- adjusted shell measurements revealed significant differences between the two taxa for shell depth, muscle scar height, and length of ligamental area. Both reciprocal hybrids showed intermediate morphometric characters between parental lines. In addition, significant differences were also observed between C. angulata and C. gigas progenies in terms of pigmentation of adductor muscle scar. C. angulata and both reciprocal hybrid progenies showed highly pigmented adductor muscle scars whereas in C. gigas progeny the pigmentation was lighter. The differences in shell shape and muscle scar pigmentation observed in the present study support the distinction of the two taxa.info:eu-repo/semantics/publishedVersio

    Thermospermine catabolism increases Arabidopsis thaliana resistance to Pseudomonas viridiflava

    Get PDF
    This work investigated the roles of the tetraamine thermospermine (TSpm) by analysing its contribution to Arabidopsis basal defence against the biotrophic bacterium Pseudomonas viridiflava. The participation of polyamine oxidases (PAOs) in TSpm homeostasis and TSpm-mediated defence was also investigated. Exogenous supply of TSpm, as well as ectopic expression of the TSpm biosynthetic gene ACL5, increased Arabidopsis Col-0 resistance to P. viridiflava, while null acl5 mutants were less resistant than Col-0 plants. The above-mentioned increase in resistance was blocked by the PAO inhibitor SL-11061, thus demonstrating the participation of TSpm oxidation. Analysis of PAO genes expression in transgenic 35S::ACL5 and Col-0 plants supplied with TSpm suggests that PAO 1, 3, and 5 are the main PAOs involved in TSpm catabolism. In summary, TSpm exhibited the potential to perform defensive functions previously reported for its structural isomer Spm, and the relevance of these findings is discussed in the context of ACL5 expression and TSpm concentration in planta. Moreover, this work demonstrates that manipulation of TSpm metabolism modifies plant resistance to pathogens.The gift of SL-11061 by Dr Frydman (SLIL Biomedical Corporation, Madison, WI) is greatly appreciated. This work was supported by Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Argentina (PIP 5740, PIP 0395), Agencia Nacional de Promocion Cientifica y Tecnologica, Argentina (PICT 1119, ANPCYT), Universidad Nacional de General San Martin, Argentina (SJ10/30), Ministerio de Economia y Competitividad, Spain (BIO2011-23828), and Fundacion Carolina (postdoctoral fellowship to MM). MM, FLP, and OAR are members of the Research Career of CONICET.Marina, M.; Vera Sirera, FJ.; Rambla Nebot, JL.; Gonzalez, ME.; Blazquez Rodriguez, MA.; Carbonell Gisbert, J.; Pieckenstain, FL.... (2013). Thermospermine catabolism increases Arabidopsis thaliana resistance to Pseudomonas viridiflava. Journal of Experimental Botany. 64(5):1393-1402. https://doi.org/10.1093/jxb/ert012S13931402645Alonso, J. M. (2003). Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana. Science, 301(5633), 653-657. doi:10.1126/science.1086391Alippi, A. M., Dal Bo, E., Ronco, L. B., Lopez, M. V., Lopez, A. C., & Aguilar, O. M. (2003). Pseudomonas populations causing pith necrosis of tomato and pepper in Argentina are highly diverse. Plant Pathology, 52(3), 287-302. doi:10.1046/j.1365-3059.2003.00850.xAngelini, R., Bragaloni, M., Federico, R., Infantino, A., & Porta-Pugua, A. (1993). Involvement of Polyamines, Diamine Oxidase and Peroxidase in Resistance of Chickpea to Ascochyta rabiei. Journal of Plant Physiology, 142(6), 704-709. doi:10.1016/s0176-1617(11)80906-5Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.xCona, A., Rea, G., Angelini, R., Federico, R., & Tavladoraki, P. (2006). Functions of amine oxidases in plant development and defence. Trends in Plant Science, 11(2), 80-88. doi:10.1016/j.tplants.2005.12.009Fincato, P., Moschou, P. N., Spedaletti, V., Tavazza, R., Angelini, R., Federico, R., … Tavladoraki, P. (2010). Functional diversity inside the Arabidopsis polyamine oxidase gene family. Journal of Experimental Botany, 62(3), 1155-1168. doi:10.1093/jxb/erq341Gonzalez, M. E., Marco, F., Minguet, E. G., Carrasco-Sorli, P., Blázquez, M. A., Carbonell, J., … Pieckenstain, F. L. (2011). Perturbation of spermine synthase Gene Expression and Transcript Profiling Provide New Insights on the Role of the Tetraamine Spermine in Arabidopsis Defense against Pseudomonas viridiflava. Plant Physiology, 156(4), 2266-2277. doi:10.1104/pp.110.171413Hanzawa, Y., Imai, A., Michael, A. J., Komeda, Y., & Takahashi, T. (2002). Characterization of the spermidine synthase-related gene family inArabidopsis thaliana. FEBS Letters, 527(1-3), 176-180. doi:10.1016/s0014-5793(02)03217-9Hanzawa, Y. (2000). ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. The EMBO Journal, 19(16), 4248-4256. doi:10.1093/emboj/19.16.4248Igarashi, K., & Kashiwagi, K. (2000). Polyamines: Mysterious Modulators of Cellular Functions. Biochemical and Biophysical Research Communications, 271(3), 559-564. doi:10.1006/bbrc.2000.2601Imai, A., Akiyama, T., Kato, T., Sato, S., Tabata, S., Yamamoto, K. T., & Takahashi, T. (2003). Spermine is not essential for survival of Arabidopsis. FEBS Letters, 556(1-3), 148-152. doi:10.1016/s0014-5793(03)01395-4Imai, A. (2006). The dwarf phenotype of the Arabidopsis acl5 mutant is suppressed by a mutation in an upstream ORF of a bHLH gene. Development, 133(18), 3575-3585. doi:10.1242/dev.02535Jakob, K., Goss, E. M., Araki, H., Van, T., Kreitman, M., & Bergelson, J. (2002). Pseudomonas viridiflavaandP. syringae—Natural Pathogens ofArabidopsis thaliana. Molecular Plant-Microbe Interactions, 15(12), 1195-1203. doi:10.1094/mpmi.2002.15.12.1195Kakehi, J. -i., Kuwashiro, Y., Niitsu, M., & Takahashi, T. (2008). Thermospermine is Required for Stem Elongation in Arabidopsis thaliana. Plant and Cell Physiology, 49(9), 1342-1349. doi:10.1093/pcp/pcn109Kamada-Nobusada, T., Hayashi, M., Fukazawa, M., Sakakibara, H., & Nishimura, M. (2008). A Putative Peroxisomal Polyamine Oxidase, AtPAO4, is Involved in Polyamine Catabolism in Arabidopsis thaliana. Plant and Cell Physiology, 49(9), 1272-1282. doi:10.1093/pcp/pcn114Knott, J. M., Römer, P., & Sumper, M. (2007). Putative spermine synthases fromThalassiosira pseudonanaandArabidopsis thalianasynthesize thermospermine rather than spermine. FEBS Letters, 581(16), 3081-3086. doi:10.1016/j.febslet.2007.05.074Maiale, S. J., Marina, M., Sánchez, D. H., Pieckenstain, F. L., & Ruiz, O. A. (2008). In vitro and in vivo inhibition of plant polyamine oxidase activity by polyamine analogues. Phytochemistry, 69(14), 2552-2558. doi:10.1016/j.phytochem.2008.07.003Marina, M., Maiale, S. J., Rossi, F. R., Romero, M. F., Rivas, E. I., Gárriz, A., … Pieckenstain, F. L. (2008). Apoplastic Polyamine Oxidation Plays Different Roles in Local Responses of Tobacco to Infection by the Necrotrophic Fungus Sclerotinia sclerotiorum and the Biotrophic Bacterium Pseudomonas viridiflava. Plant Physiology, 147(4), 2164-2178. doi:10.1104/pp.108.122614Marini, F., Betti, L., Scaramagli, S., Biondi, S., & Torrigiani, P. (2001). Polyamine metabolism is upregulated in response to tobacco mosaic virus in hypersensitive, but not in susceptible, tobacco. New Phytologist, 149(2), 301-309. doi:10.1046/j.1469-8137.2001.00017.xMinguet, E. G., Vera-Sirera, F., Marina, A., Carbonell, J., & Blazquez, M. A. (2008). Evolutionary Diversification in Polyamine Biosynthesis. Molecular Biology and Evolution, 25(10), 2119-2128. doi:10.1093/molbev/msn161Mitsuya, Y., Takahashi, Y., Berberich, T., Miyazaki, A., Matsumura, H., Takahashi, H., … Kusano, T. (2009). Spermine signaling plays a significant role in the defense response of Arabidopsis thaliana to cucumber mosaic virus. Journal of Plant Physiology, 166(6), 626-643. doi:10.1016/j.jplph.2008.08.006Mitsuya, Y., Takahashi, Y., Uehara, Y., Berberich, T., Miyazaki, A., Takahashi, H., & Kusano, T. (2007). Identification of a novel Cys2/His2-type zinc-finger protein as a component of a spermine-signaling pathway in tobacco. Journal of Plant Physiology, 164(6), 785-793. doi:10.1016/j.jplph.2006.05.011Møller, S. G., & McPherson, M. J. (1998). Developmental expression and biochemical analysis of the Arabidopsis atao1 gene encoding an H 2 O 2 ‐generating diamine oxidase. The Plant Journal, 13(6), 781-791. doi:10.1046/j.1365-313x.1998.00080.xMoschou, P. N., Sarris, P. F., Skandalis, N., Andriopoulou, A. H., Paschalidis, K. A., Panopoulos, N. J., & Roubelakis-Angelakis, K. A. (2009). Engineered Polyamine Catabolism Preinduces Tolerance of Tobacco to Bacteria and Oomycetes. Plant Physiology, 149(4), 1970-1981. doi:10.1104/pp.108.134932Muniz, L., Minguet, E. G., Singh, S. K., Pesquet, E., Vera-Sirera, F., Moreau-Courtois, C. L., … Tuominen, H. (2008). ACAULIS5 controls Arabidopsis xylem specification through the prevention of premature cell death. Development, 135(15), 2573-2582. doi:10.1242/dev.019349Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497. doi:10.1111/j.1399-3054.1962.tb08052.xOber, D., Gibas, L., Witte, L., & Hartmann, T. (2003). Evidence for general occurrence of homospermidine in plants and its supposed origin as by-product of deoxyhypusine synthase. Phytochemistry, 62(3), 339-344. doi:10.1016/s0031-9422(02)00553-8Oshima, T. (2007). Unique polyamines produced by an extreme thermophile, Thermus thermophilus. Amino Acids, 33(2), 367-372. doi:10.1007/s00726-007-0526-zPanicot, M., Minguet, E. G., Ferrando, A., Alcázar, R., Blázquez, M. A., Carbonell, J., … Tiburcio, A. F. (2002). A Polyamine Metabolon Involving Aminopropyl Transferase Complexes in Arabidopsis. The Plant Cell, 14(10), 2539-2551. doi:10.1105/tpc.004077Pfaffl, M. W. (2002). Relative expression software tool (REST(C)) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 30(9), 36e-36. doi:10.1093/nar/30.9.e36Rambla, J. L., Vera-Sirera, F., Blázquez, M. A., Carbonell, J., & Granell, A. (2010). Quantitation of biogenic tetraamines in Arabidopsis thaliana. Analytical Biochemistry, 397(2), 208-211. doi:10.1016/j.ab.2009.10.013Rea, G., Metoui, O., Infantino, A., Federico, R., & Angelini, R. (2002). Copper Amine Oxidase Expression in Defense Responses to Wounding and Ascochyta rabiei Invasion. Plant Physiology, 128(3), 865-875. doi:10.1104/pp.010646Sagor, G. H. M., Takahashi, H., Niitsu, M., Takahashi, Y., Berberich, T., & Kusano, T. (2012). Exogenous thermospermine has an activity to induce a subset of the defense genes and restrict cucumber mosaic virus multiplication in Arabidopsis thaliana. Plant Cell Reports, 31(7), 1227-1232. doi:10.1007/s00299-012-1243-yShah, N., Thomas, T., Shirahata, A., Sigal, L. H., & Thomas, T. J. (1999). Activation of Nuclear Factor κB by Polyamines in Breast Cancer Cells†. Biochemistry, 38(45), 14763-14774. doi:10.1021/bi991291vTakahashi, Y., Berberich, T., Miyazaki, A., Seo, S., Ohashi, Y., & Kusano, T. (2003). Spermine signalling in tobacco: activation of mitogen-activated protein kinases by spermine is mediated through mitochondrial dysfunction. The Plant Journal, 36(6), 820-829. doi:10.1046/j.1365-313x.2003.01923.xTakahashi, Y., Berberich, T., Yamashita, K., Uehara, Y., Miyazaki, A., & Kusano, T. (2004). Identification of Tobacco HIN1 and Two Closely Related Genes as Spermine-Responsive Genes and their Differential Expression During the Tobacco Mosaic Virus-Induced Hypersensitive Response and During Leaf- and Flower-Senescence. Plant Molecular Biology, 54(4), 613-622. doi:10.1023/b:plan.0000038276.95539.39Takahashi, Y., Cong, R., Sagor, G. H. M., Niitsu, M., Berberich, T., & Kusano, T. (2010). Characterization of five polyamine oxidase isoforms in Arabidopsis thaliana. Plant Cell Reports, 29(9), 955-965. doi:10.1007/s00299-010-0881-1Takahashi, Y., Uehara, Y., Berberich, T., Ito, A., Saitoh, H., Miyazaki, A., … Kusano, T. (2004). A subset of hypersensitive response marker genes, including HSR203J, is the downstream target of a spermine signal transduction pathway in tobacco. The Plant Journal, 40(4), 586-595. doi:10.1111/j.1365-313x.2004.02234.xTakano, A., Kakehi, J.-I., & Takahashi, T. (2012). Thermospermine is Not a Minor Polyamine in the Plant Kingdom. Plant and Cell Physiology, 53(4), 606-616. doi:10.1093/pcp/pcs019Thomas, T., Shah, N., Klinge, C., Faaland, C., Adihkarakunnathu, S., Gallo, M., & Thomas, T. (1999). Polyamine biosynthesis inhibitors alter protein-protein interactions involving estrogen receptor in MCF-7 breast cancer cells. Journal of Molecular Endocrinology, 131-139. doi:10.1677/jme.0.0220131Tiburcio, A. F., Altabella, T., Borrell, A., & Masgrau, C. (1997). Polyamine metabolism and its regulation. Physiologia Plantarum, 100(3), 664-674. doi:10.1111/j.1399-3054.1997.tb03073.xUehara, Y., Takahashi, Y., Berberich, T., Miyazaki, A., Takahashi, H., Matsui, K., … Kusano, T. (2005). Tobacco ZFT1, a Transcriptional Repressor with a Cys2/His2 Type Zinc Finger Motif that Functions in Spermine-Signaling Pathway. Plant Molecular Biology, 59(3), 435-448. doi:10.1007/s11103-005-0272-0URANO, K., YOSHIBA, Y., NANJO, T., IGARASHI, Y., SEKI, M., SEKIGUCHI, F., … SHINOZAKI, K. (2003). Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stress responses and developmental stages. Plant, Cell and Environment, 26(11), 1917-1926. doi:10.1046/j.1365-3040.2003.01108.xVera-Sirera, F., Minguet, E. G., Singh, S. K., Ljung, K., Tuominen, H., Blázquez, M. A., & Carbonell, J. (2010). Role of polyamines in plant vascular development. Plant Physiology and Biochemistry, 48(7), 534-539. doi:10.1016/j.plaphy.2010.01.011Yamakawa, H., Kamada, H., Satoh, M., & Ohashi, Y. (1998). Spermine Is a Salicylate-Independent Endogenous Inducer for Both Tobacco Acidic Pathogenesis-Related Proteins and Resistance against Tobacco Mosaic Virus Infection. Plant Physiology, 118(4), 1213-1222. doi:10.1104/pp.118.4.1213Yoda, H., Fujimura, K., Takahashi, H., Munemura, I., Uchimiya, H., & Sano, H. (2009). Polyamines as a common source of hydrogen peroxide in host- and nonhost hypersensitive response during pathogen infection. Plant Molecular Biology, 70(1-2), 103-112. doi:10.1007/s11103-009-9459-0Yoda, H., Yamaguchi, Y., & Sano, H. (2003). Induction of Hypersensitive Cell Death by Hydrogen Peroxide Produced through Polyamine Degradation in Tobacco Plants. Plant Physiology, 132(4), 1973-1981. doi:10.1104/pp.103.02473
    corecore