98 research outputs found

    Evaluation of a near-wall-modeled large eddy lattice boltzmann method for the analysis of complex flows relevant to IC engines

    Get PDF
    In this paper, we compare the capabilities of two open source near-wall-modeled large eddy simulation (NWM-LES) approaches regarding prediction accuracy, computational costs and ease of use to predict complex turbulent flows relevant to internal combustion (IC) engines. The applied open source tools are the commonly used OpenFOAM, based on the finite volume method (FVM), and OpenLB, an implementation of the lattice Boltzmann method (LBM). The near-wall region is modeled by the Musker equation coupled to a van Driest damped Smagorinsky-Lilly sub-grid scale model to decrease the required mesh resolution. The results of both frameworks are compared to a stationary engine flow bench experiment by means of particle image velocimetry (PIV). The validation covers a detailed error analysis using time-averaged and root mean square (RMS) velocity fields. Grid studies are performed to examine the performance of the two solvers. In addition, the differences in the processes of grid generation are highlighted. The performance results show that the OpenLB approach is on average 32 times faster than the OpenFOAM implementation for the tested configurations. This indicates the potential of LBM for the simulation of IC engine-relevant complex turbulent flows using NWM-LES with computationally economic costs

    Lifetime Prevalence, Age of Risk, and Etiology of Comorbid Psychiatric Disorders in Tourette Syndrome

    Get PDF
    IMPORTANCE: Tourette syndrome (TS) is characterized by high rates of psychiatric comorbidity; however, few studies have fully characterized these comorbidities. Furthermore, most studies have included relatively few participants (<200), and none has examined the ages of highest risk for each TS-associated comorbidity or their etiologic relationship to TS. OBJECTIVE: To characterize the lifetime prevalence, clinical associations, ages of highest risk, and etiology of psychiatric comorbidity among individuals with TS. DESIGN, SETTING, AND PARTICIPANTS: Cross-sectional structured diagnostic interviews conducted between April 1, 1992, and December 31, 2008, of participants with TS (n = 1374) and TS-unaffected family members (n = 1142). MAIN OUTCOMES AND MEASURES: Lifetime prevalence of comorbid DSM-IV-TR disorders, their heritabilities, ages of maximal risk, and associations with symptom severity, age at onset, and parental psychiatric history. RESULTS: The lifetime prevalence of any psychiatric comorbidity among individuals with TS was 85.7%; 57.7% of the population had 2 or more psychiatric disorders. The mean (SD) number of lifetime comorbid diagnoses was 2.1 (1.6); the mean number was 0.9 (1.3) when obsessive-compulsive disorder (OCD) and attention-deficit/hyperactivity disorder (ADHD) were excluded, and 72.1% of the individuals met the criteria for OCD or ADHD. Other disorders, including mood, anxiety, and disruptive behavior, each occurred in approximately 30% of the participants. The age of greatest risk for the onset of most comorbid psychiatric disorders was between 4 and 10 years, with the exception of eating and substance use disorders, which began in adolescence (interquartile range, 15–19 years for both). Tourette syndrome was associated with increased risk of anxiety (odds ratio [OR], 1.4; 95% CI, 1.0–1.9; P = .04) and decreased risk of substance use disorders (OR, 0.6; 95% CI, 0.3–0.9; P = .02) independent from comorbid OCD and ADHD; however, high rates of mood disorders among participants with TS (29.8%) may be accounted for by comorbid OCD (OR, 3.7; 95% CI, 2.9–4.8; P < .001). Parental history of ADHD was associated with a higher burden of non-OCD, non-ADHD comorbid psychiatric disorders (OR, 1.86; 95% CI, 1.32–2.61; P < .001). Genetic correlations between TS and mood (RhoG, 0.47), anxiety (RhoG, 0.35), and disruptive behavior disorders (RhoG, 0.48), may be accounted for by ADHD and, for mood disorders, by OCD. CONCLUSIONS AND RELEVANCE: This study is, to our knowledge, the most comprehensive of its kind. It confirms the belief that psychiatric comorbidities are common among individuals with TS, demonstrates that most comorbidities begin early in life, and indicates that certain comorbidities may be mediated by the presence of comorbid OCD or ADHD. In addition, genetic analyses suggest that some comorbidities may be more biologically related to OCD and/or ADHD rather than to TS

    Rare Copy Number Variants in \u3cem\u3eNRXN1\u3c/em\u3e and \u3cem\u3eCNTN6\u3c/em\u3e Increase Risk for Tourette Syndrome

    Get PDF
    Tourette syndrome (TS) is a model neuropsychiatric disorder thought to arise from abnormal development and/or maintenance of cortico-striato-thalamo-cortical circuits. TS is highly heritable, but its underlying genetic causes are still elusive, and no genome-wide significant loci have been discovered to date. We analyzed a European ancestry sample of 2,434 TS cases and 4,093 ancestry-matched controls for rare (\u3c 1% frequency) copy-number variants (CNVs) using SNP microarray data. We observed an enrichment of global CNV burden that was prominent for large (\u3e 1 Mb), singleton events (OR = 2.28, 95% CI [1.39–3.79], p = 1.2 × 10−3) and known, pathogenic CNVs (OR = 3.03 [1.85–5.07], p = 1.5 × 10−5). We also identified two individual, genome-wide significant loci, each conferring a substantial increase in TS risk (NRXN1 deletions, OR = 20.3, 95% CI [2.6–156.2]; CNTN6 duplications, OR = 10.1, 95% CI [2.3–45.4]). Approximately 1% of TS cases carry one of these CNVs, indicating that rare structural variation contributes significantly to the genetic architecture of TS

    Expression of emotional arousal in two different piglet call types

    Get PDF
    Humans as well as many animal species reveal their emotional state in their voice. Vocal features show strikingly similar correlation patterns with emotional states across mammalian species, suggesting that the vocal expression of emotion follows highly conserved signalling rules. To fully understand the principles of emotional signalling in mammals it is, however, necessary to also account for any inconsistencies in the way that they are acoustically encoded. Here we investigate whether the expression of emotions differs between call types produced by the same species. We compare the acoustic structure of two common piglet calls—the scream (a distress call) and the grunt (a contact call)—across three levels of arousal in a negative situation. We find that while the central frequency of calls increases with arousal in both call types, the amplitude and tonal quality (harmonic-to-noise ratio) show contrasting patterns: as arousal increased, the intensity also increased in screams, but not in grunts, while the harmonicity increased in screams but decreased in grunts. Our results suggest that the expression of arousal depends on the function and acoustic specificity of the call type. The fact that more vocal features varied with arousal in scream calls than in grunts is consistent with the idea that distress calls have evolved to convey information about emotional arousal

    Synaptic processes and immune-related pathways implicated in Tourette syndrome

    Get PDF
    Tourette syndrome (TS) is a neuropsychiatric disorder of complex genetic architecture involving multiple interacting genes. Here, we sought to elucidate the pathways that underlie the neurobiology of the disorder through genome-wide analysis. We analyzed genome-wide genotypic data of 3581 individuals with TS and 7682 ancestry-matched controls and investigated associations of TS with sets of genes that are expressed in particular cell types and operate in specific neuronal and glial functions. We employed a self-contained, set-based association method (SBA) as well as a competitive gene set method (MAGMA) using individual-level genotype data to perform a comprehensive investigation of the biological background of TS. Our SBA analysis identified three significant gene sets after Bonferroni correction, implicating ligand-gated ion channel signaling, lymphocytic, and cell adhesion and transsynaptic signaling processes. MAGMA analysis further supported the involvement of the cell adhesion and trans-synaptic signaling gene set. The lymphocytic gene set was driven by variants in FLT3, raising an intriguing hypothesis for the involvement of a neuroinflammatory element in TS pathogenesis. The indications of involvement of ligand-gated ion channel signaling reinforce the role of GABA in TS, while the association of cell adhesion and trans-synaptic signaling gene set provides additional support for the role of adhesion molecules in neuropsychiatric disorders. This study reinforces previous findings but also provides new insights into the neurobiology of TS

    Synaptic processes and immune-related pathways implicated in Tourette syndrome.

    Get PDF
    Tourette syndrome (TS) is a neuropsychiatric disorder of complex genetic architecture involving multiple interacting genes. Here, we sought to elucidate the pathways that underlie the neurobiology of the disorder through genome-wide analysis. We analyzed genome-wide genotypic data of 3581 individuals with TS and 7682 ancestry-matched controls and investigated associations of TS with sets of genes that are expressed in particular cell types and operate in specific neuronal and glial functions. We employed a self-contained, set-based association method (SBA) as well as a competitive gene set method (MAGMA) using individual-level genotype data to perform a comprehensive investigation of the biological background of TS. Our SBA analysis identified three significant gene sets after Bonferroni correction, implicating ligand-gated ion channel signaling, lymphocytic, and cell adhesion and transsynaptic signaling processes. MAGMA analysis further supported the involvement of the cell adhesion and trans-synaptic signaling gene set. The lymphocytic gene set was driven by variants in FLT3, raising an intriguing hypothesis for the involvement of a neuroinflammatory element in TS pathogenesis. The indications of involvement of ligand-gated ion channel signaling reinforce the role of GABA in TS, while the association of cell adhesion and trans-synaptic signaling gene set provides additional support for the role of adhesion molecules in neuropsychiatric disorders. This study reinforces previous findings but also provides new insights into the neurobiology of TS

    Stromelysin-3 over-expression enhances tumourigenesis in MCF-7 and MDA-MB-231 breast cancer cell lines: involvement of the IGF-1 signalling pathway

    Get PDF
    BACKGROUND: Stromelysin-3 (ST-3) is over-expressed in the majority of human carcinomas including breast carcinoma. Due to its known effect in promoting tumour formation, but its impeding effect on metastasis, a dual role of ST-3 in tumour progression, depending on the cellular grade of dedifferentiation, was hypothesized. METHODS: The present study was designed to investigate the influence of ST-3 in vivo and in vitro on the oestrogen-dependent, non-invasive MCF-7 breast carcinoma cell line as well as on the oestrogen-independent, invasive MDA-MB-231 breast carcinoma cell line. Therefore an orthotopic human xenograft tumour model in nude mice, as well as a 3D matrigel cell culture system, were employed. RESULTS: Using both in vitro and in vivo techniques, we have demonstrated that over-expression of ST-3 in MCF-7 and MDA-MB-231 cells leads to both increased cell numbers and tumour volumes. This observation was dependent upon the presence of growth factors. In particular, the enhanced proliferative capacity was in MCF-7/ST-3 completely and in MDA-MB-231/ST-3 cells partially dependent on the IGF-1 signalling pathway. Microarray analysis of ST-3 over-expressing cells revealed that in addition to cell proliferation, further biological processes seemed to be affected, such as cell motility and stress response. The MAPK-pathway as well as the Wnt and PI3-kinase pathways, appear to also play a potential role. Furthermore, we have demonstrated that breast cancer cell lines of different differentiation status, as well as the non-tumourigenic cell line MCF-10A, have a comparable capability to induce endogenous ST-3 expression in fibroblasts. CONCLUSION: These data reveal that ST-3 is capable of enhancing tumourigenesis in highly differentiated "early stage" breast cancer cell lines as well as in further progressed breast cancer cell lines that have already undergone epithelial-mesenchymal transition. We propose that ST-3 induction in tumour fibroblasts leads to the stimulation of the IGF-1R pathway in carcinoma cells, thus enhancing their proliferative capacity. In addition, further different cellular processes seem to be activated by ST-3, possibly accounting for the dual role of ST-3 in tumour progression and metastasis
    corecore