2,616 research outputs found

    Spitzer IRAC confirmation of z_850-dropout galaxies in the Hubble Ultra Deep Field: stellar masses and ages at z~7

    Full text link
    Using Spitzer IRAC mid-infrared imaging from the Great Observatories Origins Deep Survey, we study z_850-dropout sources in the Hubble Ultra Deep Field. After carefully removing contaminating flux from foreground sources, we clearly detect two z_850-dropouts at 3.6 micron and 4.5 micron, while two others are marginally detected. The mid-infrared fluxes strongly support their interpretation as galaxies at z~7, seen when the Universe was only 750 Myr old. The IRAC observations allow us for the first time to constrain the rest-frame optical colors, stellar masses, and ages of the highest redshift galaxies. Fitting stellar population models to the spectral energy distributions, we find photometric redshifts in the range 6.7-7.4, rest-frame colors U-V=0.2-0.4, V-band luminosities L_V=0.6-3 x 10^10 L_sun, stellar masses 1-10 x 10^9 M_sun, stellar ages 50-200 Myr, star formation rates up to ~25 M_sun/yr, and low reddening A_V<0.4. Overall, the z=7 galaxies appear substantially less massive and evolved than Lyman break galaxies or Distant Red Galaxies at z=2-3, but fairly similar to recently identified systems at z=5-6. The stellar mass density inferred from our z=7 sample is rho* = 1.6^{+1.6}_{-0.8} x 10^6 M_sun Mpc^-3 (to 0.3 L*(z=3)), in apparent agreement with recent cosmological hydrodynamic simulations, but we note that incompleteness and sample variance may introduce larger uncertainties. The ages of the two most massive galaxies suggest they formed at z>8, during the era of cosmic reionization, but the star formation rate density derived from their stellar masses and ages is not nearly sufficient to reionize the universe. The simplest explanation for this deficiency is that lower-mass galaxies beyond our detection limit reionized the universe.Comment: 4 pages, 3 figures, emulateapj, Accepted for publication in ApJ Letter

    Regional differences in store-operated Ca2+ entry in the epithelium of the intact human lens

    Get PDF
    An elevated level of Ca2+ is an important factor in cataract, yet precisely how Ca2+ enters the lens is unknown. Lens epithelial cells contain a range of G-protein–coupled receptors and receptor tyrosine kinases that induce increases in intracellular Ca2+. Receptor-associated Ca2+ influx is, therefore, likely to be an important route for Ca2+ influx to the lens. The authors investigated stimulated and passive Ca2+ influx in in situ human lens epithelium. Ca2+ changes in equatorial (E) and central anterior (CA) epithelial cells were monitored with the use of a Ca2+ indicator (Fluo4) and confocal microscopy. Gene expression was monitored by RT-PCR and immunoblotting. Adenosine triphosphate (ATP) induced Ca2+ responses that were smaller in CA than E. Ca2+ store depletion, using ATP (100 µM) or thapsigargin (1 µM), revealed greater relative store capacity and Ca2+ influx in E. Ca2+ influx was blocked by La3+ (0.5 µM) in both regions. Unstimulated Ca2+ influx was greater in E than CA. Greater expression of Orai1 and STIM1 was detected in E than in CA. Greater Ca2+ store capacity and Ca2+ influx in E compared with CA reflects underlying differences in proliferation and differentiation between the regions. The relatively small resting Ca2+ influx in CA epithelium suggests that store-operated Ca2+ entry (SOCE) is the main route of Ca2+ influx in these cells. Greater resting influx and SOCE in E cells suggests that these are a major route for Ca2+ influx into the lens. Increased expression of Orai1 and STIM1 in E could account for the differences in Ca2+ entry. Receptor activation will modulate Ca2+ influx, and inappropriate activity may contribute to cortical cataract

    Why do seizures occur when they do? Situations perceived to be associated with increased or decreased seizure likelihood in people with epilepsy and intellectual disability.

    Get PDF
    Seizure precipitants are commonly reported in the general population of people with epilepsy. However, there has been little research in this area in people with epilepsy and intellectual disability (ID). We conducted a survey of the situations associated with increased or decreased seizure likelihood in this population. The aim of the research was to identify situations of increased seizure likelihood (SISLs) and situations of decreased seizure likelihood (SDSLs) reported by carers of people with an ID and epilepsy. Three study groups were investigated: two groups comprising individuals with ID associated with a specific genetic diagnosis - Rett syndrome or fragile X syndrome - and one group consisting of individuals with a range of other etiologies. Responses relating to 100 people were received: 44 relating to people with Rett syndrome, 25 to people with fragile X syndrome, and 31 to people whose ID had some other etiologies. Ninety-eight percent of the respondents reported at least one SISL, and 60% reported at least one SDSL. Having more seizure types and greater seizure frequency were associated with a higher number of SISLs reported. The most commonly reported SISLs and SDSLs for each of the three groups are presented. The most common SISL overall was illness, which was reported as an SISL by 71% of the respondents. There was less consensus with regard to SDSLs. These findings provide a greater understanding of when seizures occur in those with ID and epilepsy, with possible implications for adjunctive behavioral management of seizures in those with treatment-refractory epilepsy.This is the final published version. It has been published by Elsevier in Epilepsy & Behavior here: http://www.sciencedirect.com/science/article/pii/S1525505014002947

    A large effective population size for established within-host influenza virus infection

    Get PDF
    Strains of the influenza virus form coherent global populations, yet exist at the level of single infections in individual hosts. The relationship between these scales is a critical topic for understanding viral evolution. Here we investigate the within-host relationship between selection and the stochastic effects of genetic drift, estimating an effective population size of infection Ne for influenza infection. Examining whole-genome sequence data describing a chronic case of influenza B in a severely immunocompromised child we infer an Ne of 2.5 × 107 (95% confidence range 1.0 × 107 to 9.0 × 107) suggesting that genetic drift is of minimal importance during an established influenza infection. Our result, supported by data from influenza A infection, suggests that positive selection during within-host infection is primarily limited by the typically short period of infection. Atypically long infections may have a disproportionate influence upon global patterns of viral evolution

    Rest-Frame Optical Emission Lines in z~3.5 Lyman Break selected Galaxies: The Ubiquity of Unusually High [OIII]/Hbeta Ratios at 2 Gyr

    Get PDF
    We present K-band spectra of rest-frame optical emission lines for 24 star-forming galaxies at z~3.2-3.7 using MOSFIRE on the Keck 1 telescope. Strong rest-frame optical [O III] and Hbeta emission lines were detected in 18 LBGs. The median flux ratio of [O III]5007 to Hbeta is 5.1+/-0.5, a factor of 5-10x higher than in local galaxies with similar stellar masses. The observed Hbeta luminosities are in good agreement with expectations from the estimated star-formation rates, and none of our sources are detected in deep X-ray stacks, ruling out significant contamination by active galactic nuclei. Combining our sample with a variety of LBGs from the literature, including 49 galaxies selected in a very similar manner, we find a high median ratio of [OIII]/Hbeta = 4.8+0.8-1.7. This high ratio seems to be an ubiquitous feature of z~3-4 LBGs, very different from typical local star-forming galaxies at similar stellar masses. The only comparable systems at z~0 are those with similarly high specific star-formation rates, though ~5x lower stellar masses. High specific star-formation rates either result in a much higher ionization parameter or other unusual conditions for the interstellar medium, which result in a much higher [OIII]/Hbeta line ratio. This implies a strong relation between a global property of a galaxy, the specific star-formation rate, and the local conditions of ISM in star-forming regions.Comment: 14 pages, 8 figures, 5 color, published in ApJ, updated to reflect published versio

    Detection of elliptical shapes via cross-entropy clustering

    Full text link
    The problem of finding elliptical shapes in an image will be considered. We discuss the solution which uses cross-entropy clustering. The proposed method allows the search for ellipses with predefined sizes and position in the space. Moreover, it works well for search of ellipsoids in higher dimensions

    The Impact of Strong Gravitational Lensing on Observed Lyman-Break Galaxy Numbers at 4<z<8 in the GOODS and the XDF Blank Fields

    Get PDF
    Detection of Lyman-Break Galaxies (LBGs) at high-redshift can be affected by gravitational lensing induced by foreground deflectors not only in galaxy clusters, but also in blank fields. We quantify the impact of strong magnification in the samples of BB, VV, ii, zz &\& YY LBGs (4≲z≲84\lesssim z \lesssim8) observed in the XDF and GOODS/CANDELS fields, by investigating the proximity of dropouts to foreground objects. We find that ∼6%\sim6\% of bright LBGs (mH1602m_{H_{160}}2) by foreground objects. This fraction decreases from ∼3.5%\sim 3.5\% at z∼6z\sim6 to ∼1.5%\sim1.5\% at z∼4z\sim4. Since the observed fraction of strongly lensed galaxies is a function of the shape of the luminosity function (LF), it can be used to derive Schechter parameters, α\alpha and M⋆M_{\star}, independently from galaxy number counts. Our magnification bias analysis yields Schechter-function parameters in close agreement with those determined from galaxy counts albeit with larger uncertainties. Extrapolation of our analysis to z≳8z\gtrsim 8 suggests that future surveys with JSWT, WFIRST and EUCLID should find excess LBGs at the bright-end, even if there is an intrinsic exponential cutoff of number counts. Finally, we highlight how the magnification bias measurement near the detection limit can be used as probe of the population of galaxies too faint to be detected. Preliminary results using this novel idea suggest that the magnification bias at MUV∼−18M_{UV}\sim -18 is not as strong as expected if α≲−1.7\alpha\lesssim -1.7 extends well below the current detection limits in the XDF. At face value this implies a flattening of the LF at MUV≳−16.5M_{UV}\gtrsim-16.5. However, selection effects and completeness estimates are difficult to quantify precisely. Thus, we do not rule out a steep LF extending to MUV≳−15M_{UV}\gtrsim -15.Comment: Submitted to ApJ on 18/12/201

    The Magnitude-Size Relation of Galaxies out to z ~ 1

    Full text link
    As part of the Deep Extragalactic Evolutionary Probe (DEEP) survey, a sample of 190 field galaxies (I_{814} <= 23.5) in the ``Groth Survey Strip'' has been used to analyze the magnitude-size relation over the range 0.1 < z < 1.1. The survey is statistically complete to this magnitude limit. All galaxies have photometric structural parameters, including bulge fractions (B/T), from Hubble Space Telescope images, and spectroscopic redshifts from the Keck Telescope. The analysis includes a determination of the survey selection function in the magnitude-size plane as a function of redshift, which mainly drops faint galaxies at large distances. Our results suggest that selection effects play a very important role. A first analysis treats disk-dominated galaxies with B/T < 0.5. If selection effects are ignored, the mean disk surface brightness (averaged over all galaxies) increases by ~1.3 mag from z = 0.1 to 0.9. However, most of this change is plausibly due to comparing low luminosity galaxies in nearby redshift bins to high luminosity galaxies in distant bins. If this effect is allowed for, no discernible evolution remains in the disk surface brightness of bright (M_B < -19) disk-dominated galaxies. A second analysis treats all galaxies by substituting half-light radius for disk scale length, with similar conclusions. Indeed, at all redshifts, the bulk of galaxies is consistent with the magnitude-size envelope of local galaxies, i.e., with little or no evolution in surface brightness. In the two highest redshift bins (z > 0.7), a handful of luminous, high surface brightness galaxies appears that occupies a region of the magnitude-size plane rarely populated by local galaxies. Their wide range of colors and bulge fractions points to a variety of possible origins.Comment: 19 pages, 12 figures. Accepted for publication in the Astrophysical Journa
    • …
    corecore