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Abstract Strains of the influenza virus form coherent global populations, yet exist at the level of

single infections in individual hosts. The relationship between these scales is a critical topic for

understanding viral evolution. Here we investigate the within-host relationship between selection

and the stochastic effects of genetic drift, estimating an effective population size of infection Ne for

influenza infection. Examining whole-genome sequence data describing a chronic case of influenza

B in a severely immunocompromised child we infer an Ne of 2.5 � 107 (95% confidence range 1.0 �

107 to 9.0 � 107) suggesting that genetic drift is of minimal importance during an established

influenza infection. Our result, supported by data from influenza A infection, suggests that positive

selection during within-host infection is primarily limited by the typically short period of infection.

Atypically long infections may have a disproportionate influence upon global patterns of viral

evolution.

Introduction
The evolution of the influenza virus may be considered across a broad range of scales. On a global

level, populations exhibit coherent behaviour (Buonagurio et al., 1986; Fitch et al., 1997;

Bedford et al., 2015), evolving rapidly under collective host immune pressure (Ferguson et al.,

2003; Grenfell et al., 2004). On another level, these global populations are nothing more than very

large numbers of individual host infections, separated by transmission events.

Despite the clear role for selection in global influenza populations, recent studies of within-host

infection have suggested that positive selection does not strongly influence evolution at this smaller

scale (Debbink et al., 2017; McCrone et al., 2018; Han et al., 2019). Contrasting explanations

have been given for this, with suggestions either that selection at the within-host level is intrinsically

inefficient, being dominated by stochastic processes (McCrone et al., 2018), or that while selection

is efficient, a mismatch in timing between the peak viral titre and the host adaptive immune

response prevents selection from taking effect (Han et al., 2019).

To resolve this issue, we evaluated the relative importance of selection and genetic drift during a

case of influenza infection. The balance between these factors is determined by the effective size of

the population, denoted Ne. If Ne is high, selection will outweigh genetic drift, even where differen-

ces in viral fitness are small (Rouzine et al., 2001). By contrast, if Ne is low, less fit viruses are more

likely to outcompete their fitter compatriots.

Estimating Ne is a difficult task, with a long history of method development in this area

(Wright, 1938; Wang et al., 2016; Khatri and Burt, 2019). A simple measure of Ne may be
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calculated by matching the genetic change in allele frequencies in a population with the changes

occurring in an idealised population evolving under genetic drift (Kimura and Crow, 1963). How-

ever, such estimates are vulnerable to distortion, for example being reduced by the effect of positive

selection in a population. Where the global influenza A/H3N2 population is driven by repeated

selective sweeps (Fitch et al., 1991; Rambaut et al., 2008; Strelkowa and Lässig, 2012) a neutral

estimation method suggests a value for Ne not much greater than 100 (Bedford et al., 2010). While

methods for jointly estimating Ne and selection exist, they are limited in considering only a few loci

in linkage disequililbrium (Bollback et al., 2008; Feder et al., 2014; Foll et al., 2014;

Terhorst et al., 2015; Rousseau et al., 2017). Non-trivial population structure can affect estimates

(Laporte and Charlesworth, 2002); a growing body of evidence supports the existence of structure

in within-host influenza infection (Lakdawala et al., 2015; Sobel Leonard et al., 2017a;

Richard et al., 2018; Hamada et al., 2012). While careful experimental techniques can reduce

sequencing error (McCrone and Lauring, 2016), noise from sequencing and unrepresentative sam-

ple collection combine (Illingworth et al., 2017), potentially confounding estimates of Ne in viral

populations (Lumby et al., 2018). If Ne is high, any signal of drift can be obscured by noise.

We here estimate a mean effective population size for an established within-host influenza B

infection using data collected from a severely immunocompromised host. While the viral load of the

infection was not unusual for a hospitalised childhood infection (Wishaupt et al., 2017), an absence

of cell-mediated immunity led to the persistence of the infection for several months (Lumby et al.,

2020). Given extensive sequence data collected during infection, the reduced role of positive selec-

tion, combined with novel methods to account for noise and population structure, enabled an

improved inference of Ne. The large effective size we infer suggests that selection acts in an efficient

manner during an established influenza infection. Even in more typical cases, the influence of posi-

tive selection is likely to be limited only by the duration of infection.

Results and discussion
Viral samples were collected at 41 time points spanning 8 months during the course of an influenza

B infection in a severely immunocompromised host (Figure 1A). Clinical details of the case, and the

use of viral sequence data in evaluating the effectiveness of clinical intervention, have been

described elsewhere (Lumby et al., 2020). After unsuccessful treatment with oseltamivir, zanamivir

and nitazoxanide, a bone marrow transplant and favipiravir combination therapy led to the apparent

clearance of infection. Apart from a single exception, biweekly samples tested negative for influenza

across a period of close to two months. A subsequent resurgence of zanamivir-resistant infection

was cleared by favipiravir and zanamivir in combination.

Phylogenetic analysis of whole-genome viral consensus sequences showed the existence of non-

trivial population structure, with at least two distinct clades emerging over time (Figure 1B, Fig-

ure 1—figure supplement 1); we term these clades A and B. Having diverged, the two clades per-

sisted across several months of infection. Haplotype reconstruction showed that samples from clade

B were comprised of distinct viral haplotypes to those from clade A; similar patterns were observed

in different viral segments (Figure 1—figure supplement 2). The October 4th sample is intermediate

between the initial and final samples collected (Figure 1D). We suggest that, from a common evolu-

tionary origin, Clade B slowly evolved away from the initial consensus, while viruses in clade A stayed

close in sequence space to this consensus. The cladal structure suggests the existence of spatially

distinct viral populations in the host, samples stochastically representing one population or the

other.

To estimate the effective population size, we analysed genome-wide sequence data from samples

in clade A collected before first use of favipiravir. A method of linear regression was used to quantify

the rate of viral evolution, measuring the genetic distance between samples as a function of increas-

ing time between dates of sample collection. We inferred a rate equivalent to 0.051 substitutions

per day (97.5% confidence interval 0.034 to 0.068) (Figure 2A), equivalent to 7.94 substitutions

genome-wide across 157 days of evolution. The vertical intercept of this line provides an estimate of

the contribution of noise to the measured distance between samples, potentially arising from

sequencing error or undiagnosed population structure. The identified value of close to 40 substitu-

tions is equivalent to a between-sample allele frequency difference of approximately +/- 0.3% per
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Figure 1. Population structure of the influenza infection. (A) CT values from viral samples collected over time indicate the viral load of the infection; a

higher number corresponds to a lower viral load. Drug information, above, shows the times during which oseltamivir (green), zanamivir (yellow),

nitazoxanide (blue) and favipiravir (purple) were prescribed. Black dots show samples from which viral sequence data were collected; gray dots show

samples from which viral sequence data were not collected. The green box shows the window of time over which samples were analysed, preceding

the use of favipiravir in January. The mean viral load (dashed horizontal line, red) was close to the mean reported for a set of samples from hospitalised

children with influenza (dashed horizontal blue line) (Wishaupt et al., 2017). A black arrow shows the date of a bone marrow transplant (BMT). (B) A

phylogeny of whole-genome viral consensus sequences identified two distinct clades in the viral population. Clade B featured three samples,

Figure 1 continued on next page
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locus. While considerable noise affects each sample, the dataset as a whole provides a clear signal

of evolutionary change.

A simulation based analysis, measuring the extent of evolution in idealised Wright-Fisher popula-

tions (Kimura and Crow, 1963), inferred an effective population size of 2.5 � 107 (95% confidence

range 1.0 � 107 to 9.0 � 107) for viruses in clade A before the use of favipiravir (Figure 2B). This

value is substantially larger than estimates made recently for within-host HIV infection

(Pennings et al., 2014; Rouzine et al., 2014), and suggests that even weak selection could easily

overcome genetic drift. Data from clade B gave a lower estimated value of 2 � 106, (95% confidence

range 4 � 105 to 2 � 108) perhaps reflecting the less frequent observation of samples in that clade

(Figure 2C,D), and the bottleneck induced by favipiravir, which was spanned by the data used in this

calculation.

Our value of Ne is representative of the population after the initial establishment of infection; the

initial expansion of the viral population was not represented in our data. Population structure during

the infection might have lowered the value we obtain (Whitlock and Barton, 1997). The partial

onset of zanamivir resistant alleles (Jackson et al., 2005), sporadically observed at intermediate fre-

quency in clade A after the administration of the drug (Figure 2—figure supplement 1), is sugges-

tive of sampling a random mixture of viruses from resistant and susceptible subpopulations.

Our method equates change in a population with genetic drift (Kimura and Crow, 1963),

neglecting the role of selection. As such, the influence of positive selection might have led us to

underestimate Ne. While viral evolution was generally not driven by selection (Figure 2—figure sup-

plement 2), positive selection (e.g. for zanamivir resistance) would increase the rate of viral evolu-

tion, lowering our inferred value. Selection may have influenced the division between clades,

perhaps through the adaptation of the virus to specific local environments. Purifying selection may

also have influenced the population in ways not accounted for by our method. Yet our result is clear.

Once an infection is established, selection will dominate the stochastic effects of drift upon within-

host evolution.

The dataset we considered is particularly suited to our calculation. The long period of infection

combined with frequent sampling allowed for the characterisation of a slow rate of evolution amidst

population structure and noise in the data. Further, the absence of strong selection reduced the

error in our inference approach, which assumed an idealised neutral population. To provide further

validation we repeated our approach on data describing long-term influenza A/H3N2 infection in

four immunocompromised adults (Xue et al., 2017). The estimates for Ne we obtained, of between

3 � 105 and 1 � 106 (Figure 2—figure supplement 3), while high, were smaller than for our flu B

case, potentially being reduced by an increased influence of selection.

We believe that our study provides a first realistic estimate of within-host effective population

size for severe influenza infection in humans. The viral load in the influenza B case was high, repre-

sentative of hospitalised cases of childhood influenza infection. However, the magnitude of our

inferred effective size, of order 107, suggests that selection will predominate over drift even in more

typical cases. Mean CT values for influenza in non-hospitalised children have been reported as

Figure 1 continued

distributed across the period of infection, with the remaining samples contained in Clade A. (C) Sub-consensus structure of the viral population inferred

via a haplotype reconstruction algorithm using data from the neuraminidase segment. The same division of sequences into two clades is visible, with

samples being comprised of distinct viral genotypes. The area of each circle is proportional to the inferred frequency of the corresponding haplotype in

the viral population. Haplotypes reaching a frequency of at least 10% in at least one time point are shown. Multiple drugs were administered to the

patient through time, with a favipiravir/zanamivir combination first causing a temporary reduction of the population to undetectable levels, then finally

clearing the infection. Haplotypes spanned the loci 96, 170, 177, 402, 403, 483, 571, 653, 968, 973, 1011, 1079, 1170, and 1240 in the NA segment. (D)

Evolutionary relationship between the haplotypes; clade B is distinct from and evolves away from those sequences comprising the initial infection.

Numbers refer to the distinct haplotypes identified within the population.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Viral load and details of treatment with inferred haplotype frequencies for the neuraminidase viral segment.

Source data 2. Data for the phylogenetic tree in Figure 1B.

Figure supplement 1. Complete phylogeny of whole-genome viral consensus sequences, coloured by clade.

Figure supplement 2. Haplotype reconstruction for data describing the haemagglutinin segment of the virus.

Figure supplement 2—source data 1. Reconstructed haplotype frequencies for the haemagglutinin viral segment.
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Figure 2. Measuring rates of evolution in the viral population. (A) Computed rate of evolution for viruses in clade A up to the time of the first use of

favipiravir. The distance between two sequences is calculated as the total absolute difference in four-allele frequencies measured across the genome.

The calculated rate per generation is based upon a generation time for influenza of 10 hours (Nobusawa and Sato, 2006). (B) Distribution of

evolutionary distances in influenza populations simulated using a Wright-Fisher model compared to the distance per generation calculated in the

regression fit. A solid blue line shows the mean, with shading indicating an approximate 97.5% confidence interval around the mean. Statistics were

calculated from sets of 400 simulations conducted at each value of Ne. The dashed black line shows the rate of evolution of the real population; gray

shading shows a 97.5% confidence interval for this statistic. (C) Calculated rate of evolution for viruses in clade B. For the purposes of calculating a rate

of evolution the first sample collected from the patient was included as part of clade B. (D) Estimation of Ne for clade B. The results of simulations

shown here are identical to those in part B of the figure.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Between sample differences and simulated rates of evolution for clades A and B of the viral population.

Figure supplement 1. Amino acids present at codon 117 of the neuraminidase segment of the virus after the first administration of zanamivir.

Figure supplement 1—source data 1. Amino acid frequencies at position 117 in the neuraminidase viral segment.

Figure supplement 2. Rates of evolutionary change at non-synonymous and synonymous sites.

Figure supplement 2—source data 1. Synonymous and non-synonymous sequence distances calculated per nucleotide across the whole viral genome

for different pairs of samples.

Figure supplement 3. Estimates of the effective population size for data from a study of long-term influenza A/H3N2 infection in four patients.

Figure supplement 3—source data 1. Sequence distances D calculated for the Xue et al dataset.

Figure supplement 4. Minority allele frequencies from distinct time points used for the Wright-Fisher simulation applied to the influenza B sequence

data.

Figure supplement 4—source data 1. Sorted allele frequencies collected genome-wide for samples used in the simulation of data.

Figure 2 continued on next page
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around 10 units lower than those for hospitalised cases (Wishaupt et al., 2017); an order of magni-

tude calculation suggests an Ne, upon the establishment of infection, of approximately 104 in such

cases. Such a value again reflects an established population, not accounting for the initial population

bottleneck. It has the implication that the evolution of a measurable variant (i.e. at a frequency of 1%

or above) will be dominated by selection of a magnitude of 1% or greater per generation

(Rouzine et al., 2001).

Our result supports the idea that a tight transmission bottleneck (McCrone et al., 2018; Vale-

sano, 2020; Ghafari et al., 2020) followed by a short period of infection is sufficient to explain the

observed lack of within-host variation in typical cases of influenza (Debbink et al., 2017;

McCrone et al., 2018); the stochastic effects of genetic drift do not limit the impact of positive

selection. Variants arising through de novo mutation would require strong selection to reach a sub-

stantial frequency during infection (Zhao et al., 2019), particularly if the onset of selection is delayed

(Miao et al., 2010; Illingworth et al., 2014; Morris, 2020). We suggest that, while not being con-

founded by drift, selection does not usually have time to fix novel variants in the population, excep-

tions including the emergence of antiviral resistance and some cases of longer infection (Xue et al.,

2017; Gubareva et al., 1998; Snydman, 2006; Centers for Disease Control and Prevention

(CDC), 2009; Imai et al., 2020; Rogers et al., 2015).

Our result highlights the potential importance of longer infections in the adaptation of global

influenza populations, particularly where some adaptive immune response remains. A newly emer-

gent variant under strong positive selection increases faster than linearly in frequency (Hal-

dane, 1924). Given a large Ne, implying efficient selection, additional days of infection will have a

disproportionate influence upon the potential transmission of adaptive variants. This does not imply

that longer infections are the sole driving force behind global viral adaptation; selective effects

affecting viral transmissibility (Lumby et al., 2018) would provide an alternative explanation. How-

ever, our work suggests that longer-term infections may be an important area of study in the quest

to better understand global influenza virus evolution.

Materials and methods

Summary
In a single-locus haploid system, the expected change in a variant allele with frequency q caused by

genetic drift is given by the formula (Charlesworth, 2009)

E Dq½ � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q 1� qð Þ

Ne

s

(1)

This fact has been exploited to evaluate the size of transmission bottlenecks in influenza infection,

comparing statistics of genome sequence data collected before and after a transmission event

(Poon et al., 2016; Sobel Leonard et al., 2017b). Such a calculation may be affected by noise in the

sampling or sequencing of a population, particularly where the extent of noise outweighs the genu-

ine change in a population (Lumby et al., 2018). Here we suggest that, given multiple samples from

a population, an alternative approach is possible; we use this to derive a more robust estimate of

Ne. By means of evolutionary simulations we estimate Ne for cases of within-host influenza infection.

Figure 2 continued

Figure supplement 5. Frequencies of minority variant alleles identified in the HCV01 dataset used to evaluate the accuracy of variant calling in our

sequencing pipeline.

Figure supplement 5—source data 1. Replicate allele frequencies from the HCV01 dataset, described in a previous publication, and used in this study

to estimate a frequency-dependent positive predictive value for variant calling using the sequencing method applied to the influenza B data.

Figure supplement 6. Regions of frequency space used to define observations and non-observations of allele frequencies.

Figure supplement 7. Positive predictive value for minority variants under our sequencing pipeline, calculated at different frequency ranges.

Figure supplement 7—source data 1. Frequency-dependent positive predictive values for variant calling.
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Sequence data and bioinformatics
Sequence data describing the evolution of the infection was generated as part of a previous study

(Lumby et al., 2020). Data, edited to remove human genome sequence data, have been deposited

in the Sequence Read Archive with BioProject ID PRJNA601176. The HCV data used in validating

the sequencing pipeline (see below) were previously deposited in the Sequence Read Archive with

BioProject ID PRJNA380188. Processed files describing raw variant frequencies for both datasets are

available, along with code used in this project, at https://github.com/cjri/FluBData (copy archived at

https://github.com/elifesciences-publications/FluBData; Illingworth, 2020a).

Short-read data were aligned first to a broad set of influenza sequences. Sequences from this set

to which the highest number of reads aligned were identified and used to carry out a second short-

read alignment. The SAMFIRE software package was then used to filter the short-read data with a

PHRED score cutoff of 30, to identify consensus sequences, and to calculate the number of each

nucleotide found at each position in the genome. SAMFIRE is available from https://github.com/cjri/

samfire (Illingworth, 2020b).

Calculation of evolutionary distances
Variant frequencies at different time points during infection were used to calculate a rate of change

in the population over time. We define q(t) as a 4 x L element vector describing the frequencies of

each of the nucleotides A, C, G, and T at each locus in the viral genome at time t. We next define a

distance between vectors q. Considering a single locus in the genome, we calculate the change in

allele frequencies over time via a generalisation of the Hamming distance

d qi t1ð Þ;qi t2ð Þð Þ ¼
1

2 a� A;C;G;Tf g

X

qai t1ð Þ� qai t2ð Þ
�

�

�

� (2)

where the term inside the sum indicates the absolute difference between the frequency of allele a at

locus i. The statistic di is equal to one in the case of a substitution, for example where only A nucleo-

tides are observed in one sample and only G nucleotides in another. However, in contrast to the

Hamming distance it further captures smaller changes in allele frequencies, lesser changes producing

values between zero and one, such that a change of a variant frequency from 45% to 55% at a two-

allele locus would equate to a distance of 0.1, representing half of the sum of the absolute changes

in each of the two frequencies. The total distance between the two vectors may now be calculated

as

D q t1ð Þ;q t2ð Þð Þ ¼
i

X

d qi t1ð Þ;qi t2ð Þð Þ (3)

where the sum over i is conducted over all loci in the viral genome.

Sequence distances for non-synonymous and synonymous mutations were calculated in a similar

manner, with the exception that distances were calculated over individual nucleotides rather than in

a per-locus manner. We calculated

DNS q t1ð Þ;q t2ð Þð Þ ¼
1

2 AN;i

�

�

�

�

a;i�AN;i

X

qai t1ð Þ� qai t2ð Þ
�

�

�

� (4)

and

DS q t1ð Þ;q t2ð Þð Þ ¼
1

2 AS;i

�

�

�

�

a;i�AS;i

X

qai t1ð Þ� qai t2ð Þ
�

�

�

� (5)

where AN,i and AS,i are the sets of nucleotides a and positions i in the genome which respectively

induce non-synonymous and synonymous changes in the consensus sequence. Synonymous and

non-synonymous variants were identified with respect to influenza B protein sequences; a nucleotide

substitution was defined as being non-synonymous if it induced a change in the coded protein in at

least one viral protein sequence. By contrast to our primary distance measurement, values for synon-

ymous and non-synonymous sites were calculated as mean distances per nucleotide, reflecting the

differing numbers of each type of potential substitution in the viral genome.
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Estimation of effective population size
We converted our measurements of sequence distance into an estimate of Ne by means of a simpli-

fied evolutionary model, assuming that all of the change in the population results from genetic drift.

We first note the effect of error in measurements of the population upon our distance metric.

We suppose that at the time t, we make the observation:

q̂ tð Þ ¼ q tð Þþ e tð Þ (6)

where e is the error in measuring the population. Our definition of ‘error’ here is a broad one; we

include both the potential for viral material in a single swab to not fully capture the entire viral diver-

sity within the host and the potential for the sequencing pipeline to distort the composition of the

material in the swab (Illingworth et al., 2017). In our distance calculation, we now have:

Dðq̂ðt1Þ; q̂ðt2ÞÞ ¼
1

2

X

i

X

a� A;C;G;Tf g

j qai t1ð Þ� qai t2ð Þ
� �

þ eai t1ð Þ� eai t2ð Þ
� ��

�

� (7)

where the terms ei are locus-specific errors in the measurement of allele frequencies; we write this

equation in the form:

D q̂ t1ð Þ; q̂ t2ð Þð Þ ¼D q t1ð Þ;q t2ð Þð ÞþE q t1ð Þ;q t2ð Þð Þ (8)

where E is the deviation incurred from the true distance.

Here, given only two error-prone samples from a system, separation of the real population dis-

tance and the error term is impossible. However, given multiple samples, an approximate separation

can be made. We here use linear regression to fit a model to the observed distances, fitting the

model:

D q̂ tið Þ; q̂ tj
� �� �

»k tj � ti
�

�

�

�þE (9)

for constant values k, approximating the rate of evolutionary change in the population per unit time,

and E, approximating the mean amount of error in a measurement; here the term in vertical brackets

is the absolute difference in time between samples i and j. This approach makes two approximations,

which we believe to be either reasonable or possible to account for. Firstly, the model assumes that

a linear model is appropriate to describe the change in the population over time; within our drift

framework this is correct if the effective population size Ne is constant, and if the distribution of

allele frequencies does not change over time. In our data, the consensus population declines

approximately eight-fold (Lumby et al., 2020), then undergoes a bottleneck due to the influence of

favipiravir; we infer a representative mean value of N, selecting for clade A only samples collected

before the bottleneck. Secondly, our model assumes that the deviation from truth in our distance

metric does not change in a manner that is systematically associated with the time between samples.

Regarding the sequencing process we believe this to be correct in so far as a consistent sequencing

pipeline was used throughout. Regarding within-host population structure we note in our data a

divergence over time between samples from clade A and clade B, but split these samples to obtain

distinct estimates of Ne for each clade. We note that large deviations from our model assumptions

can be qualitatively identified by a poor fit between a simple regression model and the data.

Linear regression was performed using the Mathematica 11 software package, using the same

package to calculate a 97.5% confidence interval for the calculated gradient, k.

Wright-Fisher simulation
We next approximated the behaviour of our system using a Wright-Fisher model, re-writing the first

component of Equation 9 as

D q t1ð Þ;q t2ð Þð Þ»DD Ne;q t1ð Þð Þ t2 � t1j j (10)

Here DD is a stochastic function describing the change in the population, measured according to

the metric D, that arises from a single generation of genetic drift in a population with effective size

Ne and initial allele frequencies q(t1). Regarding these allele frequencies we note that the distribution

of minor allele frequencies across the genome was reasonably constant between samples for which
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a good read depth was achieved (Figure 2—figure supplement 4; read depths for these data have

previously been reported Lumby et al., 2020). To account for variance in these statistics we used

different samples to initiate our simulations, reporting error bars across choices of q(t1).

Our Wright-Fisher model simulated the evolution of the viral population for a single generation.

Rates of evolution calculated from the sequence data were rates of change per day whereas a

Wright-Fisher simulation gives an estimated rate of evolution per generation. We therefore scaled

the former to match the experimentally ascertained estimate of 10 hr per generation for influenza B

(Nobusawa and Sato, 2006).

To conduct a simulation we constructed a population of N viruses. Each simulated virus had a

genome comprised of eight segments, each identical in length to the corresponding segment of the

influenza B virus sampled from the patient. Observations from the clinical viral population were used

to specify the genetic composition of the viral population at the beginning of the simulation. A simu-

lated population of viral genomes was established. For each viral segment, a clinical sample was cho-

sen at random. Nucleotide frequencies at each locus in the clinical sample (modified as described

below) were used to generate a multinomial sample of viruses from the simulated population,

assigning alleles to viruses in the simulated population according to the random sample. This step

was repeated for each locus in the segment, with no intrinsic association between alleles at different

loci. The sample collected on 30th November 2017 was excluded as a starting point from this analy-

sis due to its low read depth; all other samples had a mean read depth in excess of 2000-fold

coverage.

Simulation of the population was conducted at the genome-wide level. We simulated a single

generation of the evolution of our population under genetic drift, generating a random sample of N

whole viral genomes from the population. Intra-segment recombination was assumed to be negligi-

ble (Boni et al., 2008), while reassortment between segments was neglected in line with evidence

from cases of human infection (Sobel Leonard et al., 2017a). We collected allele frequency data

from the initial and final populations, using these to calculate the distance in sequence space

through which the population had evolved according to the modified Hamming distance described

above.

For each population size tested, our simulation was run 400 times, using the data to produce a

97.5% confidence interval for the extent of evolutionary change at a given effective population size.

For each of these 400 replicate simulations, an independent random set of samples was chosen to

initiate each of the eight simulated viral segments. The extent of evolution of the real population

was compared to the results from our simulated populations, giving an inference of the effective size

of the viral population.

Amendments were made to the above approach.

Accounting for false-positive variants in sequencing: Estimating a false
positive rate
The evolutionary distance DD(N,q(t1)) calculated by our method is dependent upon the vector of

allele frequencies q. Given a greater number of polymorphic alleles in a system, the evolutionary dis-

tance, calculated as the sum of allele frequency changes, will also increase. While the experimental

pipeline we used has been shown to perform well in capturing within-host viral diversity (STOP-

HCV Consortium et al., 2016), the possibility remains that sequencing could contribute additional

diversity to the initial populations used in our simulation. We therefore made an estimate of the

extent to which our sequencing process led to the false identification of variants. To achieve this, we

used data from a previous study describing the repeat sequencing of hepatitis C virus (HCV) samples

from a host (Illingworth et al., 2017); data in this previous study were collected using the same

sequencing pipeline as that used to collect the data considered here and therefore provide a generic

measure of the level of false positive variation. The data we analysed, coded as HCV01 in the original

study, comprised four clinical HCV samples, each of which was split following nucleic acid extraction.

Some replicate samples were processed using a DNase depletion method before all samples went

through cDNA synthesis, library preparation and sequencing. DNase depletion led to samples with

lower read depth; we here compared sequence data collected from the non-depleted replicates of

each sample. Variant frequencies within this dataset, where variation was observed in more than one

sample, are shown in Figure 2—figure supplement 5.
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Considering the real viral sample, we note that at any given genetic locus, a minority variant

either exists or does not exist according to some well-defined criterion. (For the moment the way in

which variation is defined is not important; methods for defining variation, which include the use of a

frequency threshold, are discussed later.) We denote the possible states of a locus as P and N,

according to whether the locus is positive or negative for variation. We suppose that the probability

that a random locus in the genome has a minority variant is given by PP, leading to the equivalent

statistic PN = 1- PP.

Sequencing of a specific position in the genome results in the observation or non-observation of

a variant. In our data we have sets of two replicate observations of each position in the genome, giv-

ing for each minority variant the possible outcomes VV, VX, XV, and XX, where V corresponds to the

observation of a variant, and X corresponds to the non-observation of a variant. These observations

contain errors; we denote the true positive, false positive, true negative and false negative rates of

the variant identification process by PV|P, PV|N, PX|N, and PX|P respectively. In this notation, V|P indi-

cates the observation of a variant conditional on the variant being a true positive.

The underlying purpose of our calculation is to remove falsely detected variation from the popula-

tion. We begin by assuming that the false negative rate of detecting variants is equal to zero. That

is, where we do not see a variant in the sequence data, we assume that a variant is never actually

present. This is a conservative step in so far as we never add unobserved variation to the population.

Our assumption gives the result that the false negative rate, PX|P = 0. In so far that a variant is never

unobserved it follows that the true positive rate PV|P = 1.

We may now construct expressions for the probabilities of observing each of the four possible

outcomes. Noting that PV|N + PX|N = 1 we obtain

PVV ¼ PPP
2

V jPþ 1�PPð ÞP2

V jN ¼ PPþ 1�PPð ÞP2

V jN (11)

PVX ¼ PXV ¼ PPPXjPPV jPþ 1�PPð ÞPXjNPV jN ¼ 1�PPð Þ 1�PV jN

� �

PV jN (12)

PXX ¼ PPP
2

XjPþ 1�PPð ÞP2

XjN ¼ 1�PPð Þ 1�PV jN

� �2
(13)

Thus the outcome probabilities may be expressed in terms of the underlying probability of a posi-

tion having a variant, PP, and the false positive rate PV|N.

We next processed our sequence replicate data, considering only sites that were sequenced to a

read depth of at least 2000-fold coverage. For each locus in a dataset, we calculated the observed

frequency of each of the nucleotides A, C, G, and T, generating pairs which described these fre-

quencies in each of our two replicate datasets. Removing pairs in which an allele has a frequency of

more than 0.5 in either of the two datasets, we obtained a list of minority variants from each locus,

generally comprising three allele frequency pairs per locus. If it is correct that two of the three

minority alleles have very low frequencies, the frequencies are close to being statistically indepen-

dent; the existence of a very few alleles of one minority type does not greatly affect the probability

of another variant allele being observed in another read. We note that, of the more than 73 thou-

sand sites sequenced, only 56, fewer than 0.1%, had more than one minority variant at a frequency

greater than 1%. We proceeded on the assumption that each pair of minority frequencies was statis-

tically independent of the others.

From the repeated observations of sites, we may count the number of observations of each of

the four outcomes; given a total of N pairs we denote these as NVV, NVX, NXV, and NXX. Under our

model of independent pairs we constructed the multinomial log likelihood of the underlying variant

and false positive rates.

L PP;PV jN

� �

¼ log
N

NVVNVXNXVNXX

� �

P
NVV

VV P
NVX

VX P
NXV

XV P
NXX

XX

� �

(14)

where the terms Pab are constructed from PP and PV|N according to the equations above.

Given a set of paired observations, we calculated the maximum likelihood values of PP and PV|N.

From these statistics we are able to calculate the positive predictive value of sequencing, namely the

proportion of observed variants that are true positives. This is achieved by dividing the probability
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that a true positive was detected (equal to the number of true positives as PV|P = 1), by the probabil-

ity that a variant was detected:

PPV ¼
PP

PPþ 1�PPð ÞPV jN
(15)

Frequency dependence of false-positive variant calling
Within our data, our expectation was that minority variants at higher allele frequencies would be

more likely to be observed as variants in both replicate samples. We note that, where a frequency

cutoff is applied to identify variants, care is required in the above protocol. For example, if a hard

threshold was applied, in which variants were called at 1% frequency, a variant that was detected at

frequencies of 1.01% and 0.99% would be regarded as having been observed in one case, and not

observed in the other, although it likely represents a consistent observation.

In order to assess the frequency dependence of our true positive rate, we defined minimum and

maximum variant frequency thresholds qmin and qmax, and denoted the replicate observations of a

minority variant frequency as qA and qB in the two samples. We further defined the frequency qcut

according to the formula:

qcut ¼min qmin;max
qmin

2
;0:001

� �� �

(16)

We then defined regions of frequency space as follows:

VV :
qA � qcut;

qAmax;

qB � qcut;

qBmax;

qAþ qB � 3qmax

2
;

qAþ qB< 3qmax

2
;

VX:qmin � qAmax; qBcut

XV : qAcut; qmin � qBmax

XX:qAcut; qBcut; qAþ qB<
3qmin

2
(17)

These inequalities are illustrated in Figure 2—figure supplement 6.

In the above, qcut functions to slightly harshen the criteria for detecting variants at low frequen-

cies. If a variant is observed in one sample at frequency greater than qmin, then if qmin is greater than

0.2%, the frequency in the second sample had to be at least half qmin to be counted. If qmin was

between 0.1% and 0.2%, the frequency in the second sample had to be at least 0.1%, while if qmin

was less than 0.1%, the frequency in the second sample had to be at least qmin.

For different ranges of frequency values, qmin and qmax, the proportion of observed variants that

were true positives was calculated according to the maximum likelihood method above, using these

categorisations. Results are shown in Figure 2—figure supplement 7. In the process of setting up

the initial state of our Wright-Fisher simulation variants observed in the sequence data were consid-

ered in turn, drawing a Bernoulli random variable for each variant. Variants were included in the ini-

tial simulated population with probability equal to the proportion of observed variants that were

estimated to be true positives.

Accounting for mutation-selection balance
To account for our neglect of mutation, a frequency cutoff was applied to our simulation data. Under

a pure process of genetic drift, low-frequency variants in our population are likely to die out, reach-

ing a frequency of zero. In a real population, this would not occur, variants being sustained at low

frequencies by a balance of mutation and purifying selection (Haldane, 1937; Haigh, 1978). To cor-

rect for this we post-processed the initial and final frequency values from our simulations before cal-

culating our distance, imposing a minimum minority allele frequency of 0.1%. All changes in allele

frequency below this threshold were ignored, such that, for example, if a variant changed from 0.5%
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to 0%, this was processed after the fact so that the variant changed from 0.5% to 0.1%. The choice

of threshold here is conservative; leading to a conservatively low estimate of Ne.

Confidence intervals
Confidence intervals for the effective population size were calculated as the overlap of 97.5% confi-

dence intervals for the evolutionary rates in the observed data, calculated from the regression for

the real data, and estimated from the simulated statistics. The overlap of these values gives an

approximate 95% confidence interval for Ne.

Variations in methodology
A number of choices were made in our estimation of an effective population size. The effects of

each of these choices were explored through further calculation and simulation. Results are shown in

Supplementary file 1.

Approximations in the Wright-Fisher model
In the calculation to set up an initial viral population, the assignment of minority alleles to sequences

becomes slow at large population sizes. Our code simulated viral genomes; a variant allele was

included into the population by choosing an appropriate proportion of genomes to which the variant

was assigned. For greater computational efficiency we used a pseudo-random approach for choos-

ing genomes. Given a population size N, we generated a set P of prime numbers that were each

larger than N. Given some desired allele frequency q we wish to choose qN genomes to which to

assign the variant. We therefore calculated the set of numbers:

ak mod pð Þ (18)

where p is a prime number sampled at random from the set P, and a is a randomly chosen primitive

root of p. Given this choice of a and p, the values ak (where k is an integer between one and p-1)

form a pseudorandom permutation of the numbers from one to p-1. We constructed a set of qN

genomes by choosing genomes indexed in turn by the elements of this set, beginning from k = 1,

and discarding values greater than N.

To achieve calculations for population sizes larger than 107 we implemented a statistical averag-

ing method. We generated a single population of size 106, then generated 200 outcomes of a single

generation of the same size, recording allele frequencies in each case. In order to simulate a value of

N of size r x 106 we compared the frequencies of the initial population to the mean frequencies of a

random set of r outcomes. This is equivalent of simulating transmission from a population of size r x

106 in which the initial population contains r copies of each of one of 106 genotypes.

Phylogenetic analysis
Consensus sequences of data were analysed using the BEAST2 software package (Bouckaert et al.,

2014). Consensus sequences from each viral segment were concatenated then aligned using MUS-

CLE (Edgar, 2004) before performing a phylogenetic analysis on the whole genome sequence align-

ment. The B/Venezuela/02/2016 sequence was used to root the alignment, the haemagglutinin

segment of this virus having been identified as being very close to those from the patient. Trees

were generated using the HKY substitution model (Hasegawa et al., 1985). A Monte Carlo process

was run for 10 million iterations, generating a consensus tree with TreeAnnotator using the first 10%

of trees as burn-in. Figures were made using the FigTree package (http://tree.bio.ed.ac.uk/software/

figtree/).

Haplotype reconstruction
Haplotype reconstruction was performed using multi-locus polymorphism data generated by the

SAMFIRE software package (Illingworth, 2016). Variant loci in the genome were identified as those

at which a change in the consensus nucleotide was observed between the initial and the final con-

sensus. The short-read data were then processed, converting reads into strings of alleles observed

at these loci; a single paired-end read may describe alleles at none, one, or multiple loci. Next, these

strings were combined using a combinatorial algorithm to construct a list of single-segment haplo-

types, sufficient to explain all of the observed data; no frequencies were inferred at this point.
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Finally, a Dirichlet-multinomial model was used to infer the maximum likelihood frequencies of each

haplotype given the data from each time point (Illingworth, 2015). Formally, we divided reads into

sets, according to the loci at which they described alleles. A multi-locus variant consists of an obser-

vation of some specific alleles at the loci in question. By way of notation, we denote by nai the num-

ber of reads in set i which describe the multi-locus variant a, and denote the total number of reads

in the set as Ni. Given a set of haplotypes with frequencies given by the elements of the vector q,

we write as qai the summed frequencies of haplotypes that match each multi-locus variant a in set i.

For example, the haplotypes ATA and ATG would both match the multi-locus variant AT- describing

alleles at only the first two loci. We now express a likelihood for the haplotype frequencies:

L qð Þ ¼
i

X

log
G Niþ 1ð Þ

Q

aG nai þ 1ð Þ

G
P

aCq
a
i

� �

G
P

a n
a
i þCqai

� �

a

YG nai þCqai
� �

G Cqaið Þ
(19)

Here the parameter C describes the extent of noise in the sequence data, a lower value indicating

a lower confidence in the sequence data. Haplotype reconstruction was performed by finding the

maximum likelihood value of the vector of haplotype frequencies q. A value of C = 200 was chosen

for the calculation, representing a conservative estimate given the prior performance of the sequenc-

ing pipeline used in this study (Illingworth et al., 2017). In contrast to previous calculations in which

an evolutionary model was fitted to data (Illingworth, 2015), haplotype frequencies for each time

point and for each viral segment were in this case inferred independently, with no underlying evolu-

tionary model.

Data describing influenza A/H3N2 infection
Our analysis of data describing long-term influenza A/H3N2 infection was performed on data from a

previous study (Xue et al., 2017). As our method does not require an exceptional quality of

sequencing data to calculate a rate of evolution more samples were included in our analysis than

were examined in the original study. Using the codes established in the previous study, we used

samples from patient W from days 0, 7, 14, 21, 28, 56, 62, 69 and 76; from patient X from days 0, 7,

14, 21, 28, 42, and 72; from patient Y from days 0, 7, 14, 21, 28, 35, 48, 56, and 70; from patient Z

from days 14, 15, 20, 25, 41, 48, 55, 62, and 69. An identical procedure to that used to estimate Ne

from the influenza B data was applied, calculating a rate of evolution per day from sequence data,

scaling this to a rate per generation (in this case a seven hour generation time was modelled

[Nobusawa and Sato, 2006]), and then running simulations to estimate Ne. We note that the esti-

mates of false positive rate generated for the influenza B data were applied equally in this case, due

to not having equivalent data to re-estimate these values. Examining the data from patient W, our

distance measurements suggested potential population structure involving the samples collected on

days 62 and 69; these samples were excluded from our regression analysis.
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Strelkowa N, Lässig M. 2012. Clonal interference in the evolution of influenza. Genetics 192:671–682.
DOI: https://doi.org/10.1534/genetics.112.143396, PMID: 22851649

Terhorst J, Schlötterer C, Song YS. 2015. Multi-locus analysis of genomic time series data from experimental
evolution. PLOS Genetics 11:e1005069. DOI: https://doi.org/10.1371/journal.pgen.1005069, PMID: 25849855

Valesano AL. 2020. Influenza B viruses exhibit lower Within-Host diversity than influenza A viruses in human
hosts. Journal of Virology 94:791038. DOI: https://doi.org/10.1101/791038

Wang J, Santiago E, Caballero A. 2016. Prediction and estimation of effective population size. Heredity 117:193–
206. DOI: https://doi.org/10.1038/hdy.2016.43, PMID: 27353047

Whitlock MC, Barton NH. 1997. The effective size of a subdivided population. Genetics 146:427–441. PMID:
9136031

Wishaupt JO, Ploeg TV, Smeets LC, Groot R, Versteegh FG, Hartwig NG. 2017. Pitfalls in interpretation of CT-
values of RT-PCR in children with acute respiratory tract infections. Journal of Clinical Virology 90:1–6.
DOI: https://doi.org/10.1016/j.jcv.2017.02.010, PMID: 28259567

Wright S. 1938. Size of population and breeding structure in relation to evolution. Science 87:430–431.
Xue KS, Stevens-Ayers T, Campbell AP, Englund JA, Pergam SA, Boeckh M, Bloom JD. 2017. Parallel evolution
of influenza across multiple spatiotemporal scales. eLife 6:e26875. DOI: https://doi.org/10.7554/eLife.26875,
PMID: 28653624

Zhao L, Abbasi AB, Illingworth CJR. 2019. Mutational load causes stochastic evolutionary outcomes in acute RNA
viral infection. Virus Evolution 5:vez008. DOI: https://doi.org/10.1093/ve/vez008, PMID: 31024738

Lumby et al. eLife 2020;9:e56915. DOI: https://doi.org/10.7554/eLife.56915 17 of 17

Short report Evolutionary Biology Microbiology and Infectious Disease

https://doi.org/10.1128/JCM.00330-16
http://www.ncbi.nlm.nih.gov/pubmed/27385709
https://doi.org/10.1534/genetics.112.143396
http://www.ncbi.nlm.nih.gov/pubmed/22851649
https://doi.org/10.1371/journal.pgen.1005069
http://www.ncbi.nlm.nih.gov/pubmed/25849855
https://doi.org/10.1101/791038
https://doi.org/10.1038/hdy.2016.43
http://www.ncbi.nlm.nih.gov/pubmed/27353047
http://www.ncbi.nlm.nih.gov/pubmed/9136031
https://doi.org/10.1016/j.jcv.2017.02.010
http://www.ncbi.nlm.nih.gov/pubmed/28259567
https://doi.org/10.7554/eLife.26875
http://www.ncbi.nlm.nih.gov/pubmed/28653624
https://doi.org/10.1093/ve/vez008
http://www.ncbi.nlm.nih.gov/pubmed/31024738
https://doi.org/10.7554/eLife.56915

