101 research outputs found

    Pairwise interaction point processes for modelling bivariate spatial point patterns in the presence of interaction uncertainty

    Get PDF
    Current ecological research seeks to understand the mechanisms that sustain biodiversity and allow a large number of species to coexist. Coexistence concerns inter-individual interactions. Consequently, there is an interest in identifying and quantifying interactions within and between species as reflected in the spatial pattern formed by the individuals. This study analyses the spatial pattern formed by the locations of plants in a community with high biodiversity from Western Australia. We fit a pairwise interaction Gibbs marked point process to the data using a Bayesian approach and quantify the inhibitory interactions within and between the two species. We quantitatively discriminate between competing models corresponding to different inter-specific and intraspecific interactions via posterior model probabilities. The analysis provides evidence that the intraspecific interactions for the two species of the genus Banksia are generally similar to those between the two species providing some evidence for mechanisms that sustain biodiversity.Publisher PDFPeer reviewe

    Improving the usability of spatial point processes methodology : an interdisciplinary dialogue between statistics and ecology

    Get PDF
    The last few decades have seen an increasing interest and strong development in spatial point process methodology, and associated software that facilitates model fitting has become available. A lot of this progress has made these approaches more accessible to users, through freely available software. However, in the ecological user community the methodology has only been slowly picked up despite its obvious relevance to the field. This paper reflects on this development, highlighting mutual benefits of interdisciplinary dialogue for both statistics and ecology. We detail the contribution point process methodology has made to research on biodiversity theory as a result of this dialogue and reflect on reasons for the slow take-up of the methodology. This primarily concerns the current lack of consideration of the usability of the approaches, which we discuss in detail, presenting current discussions as well as indicating future directions.Publisher PDFPeer reviewe

    Data fusion in a two-stage spatio-temporal model using the INLA-SPDE approach

    Get PDF
    This paper proposes a two-stage estimation approach for a spatial misalignment scenario that is motivated by the epidemiological problem of linking pollutant exposures and health outcomes. We use integrated nested Laplace approximation method to estimate the parameters of a two-stage spatio-temporal model – the first stage models the exposures using data fusion while the second stage links the health outcomes to exposures. The first stage is based on the Bayesian melding model, which assumes a common latent field for the different data sources for the pollutants. The second stage fits a GLMM using the spatial averages of the estimated latent field, and additional spatial and temporal random effects. Uncertainty from the first stage is accounted for by simulating repeatedly from the posterior predictive distribution of the latent field. A simulation study was carried out to assess the impact of the sparsity of the data on the monitors, number of time points, and the specification of the priors in terms of the biases, RMSEs, and coverage probabilities of the parameters and the block-level exposure estimates. The results show that the parameters are generally estimated correctly but there is difficulty in estimating the Matèrn field parameters. The effect of exposures on the health outcomes is the primary parameter of interest for spatial epidemiologists and health policy makers, and our results show that the proposed method estimates these very well. The proposed method is applied to measurements of NO2 concentration and respiratory hospitalizations for year 2007 in England. The results show that an increase in NO2 levels is significantly associated with an increase in the relative risks of the health outcome. Also, there is a strong spatial structure in the risks, a strong temporal autocorrelation, and a significant spatio-temporal interaction effect.Publisher PDFPeer reviewe

    How does the community COVID-19 level of risk impact on that of a care home?

    Get PDF
    OBJECTIVES: To model the risk of COVID-19 mortality in British care homes conditional on the community level risk. METHODS: A two stage modeling process (“doubly latent”) which includes a Besag York Mollie model (BYM) and a Log Gaussian Cox Process. The BYM is adopted so as to estimate the community level risks. These are incorporated in the Log Gaussian Cox Process to estimate the impact of these risks on that in care homes. RESULTS: For an increase in the risk at the community level, the number of COVID-19 related deaths in the associated care home would be increased by exp (0.833), 2. This is based on a simulated dataset. In the context of COVID-19 related deaths, this study has illustrated the estimation of the risk to care homes in the presence of background community risk. This approach will be useful in facilitating the identification of the most vulnerable care homes and in predicting risk to new care homes. CONCLUSIONS: The modeling of two latent processes have been shown to be successfully facilitated by the use of the BYM and Log Gaussian Cox Process Models. Community COVID-19 risks impact on that of the care homes embedded in these communities

    Data-driven optimization of seismicity models using diverse data sets: generation, evaluation and ranking using inlabru

    Get PDF
    Recent developments in earthquake forecasting models have demonstrated the need for a robust method for identifying which model components are most beneficial to understanding spatial patterns of seismicity. Borrowing from ecology, we use Log‐Gaussian Cox process models to describe the spatially varying intensity of earthquake locations. These models are constructed using elements which may influence earthquake locations, including the underlying fault map and past seismicity models, and a random field to account for any excess spatial variation that cannot be explained by deterministic model components. Comparing the alternative models allows the assessment of the performance of models of varying complexity composed of different components and therefore identifies which elements are most useful for describing the distribution of earthquake locations. We demonstrate the effectiveness of this approach using synthetic data and by making use of the earthquake and fault information available for California, including an application to the 2019 Ridgecrest sequence. We show the flexibility of this modeling approach and how it might be applied in areas where we do not have the same abundance of detailed information. We find results consistent with existing literature on the performance of past seismicity models that slip rates are beneficial for describing the spatial locations of larger magnitude events and that strain rate maps can constrain the spatial limits of seismicity in California. We also demonstrate that maps of distance to the nearest fault can benefit spatial models of seismicity, even those that also include the primary fault geometry used to construct them.K. B. was funded during this work by an EPSRC PhD studentship (Grant 1519006) and during the writing of this paper by NERC‐NSF grant NE/R000794/1 and by the Real‐time Earthquake Risk Reduction for a Resilient Europe "RISE" project, which has received funding from the European Union's Horizon 2020 research and innovation program under grant Agreement 821115

    A changepoint analysis of spatio-temporal point processes

    Get PDF
    As regards author Linda Altieri, the research work underlying this paper was partially funded by a FIRB 2012 grant (project no. RBFR12URQJ; title: Statistical modeling of environmental phenomena: pollution, meteorology, health and their interactions) for research projects by the Italian Ministry of Education, Universities and Research.This work introduces a Bayesian approach to detecting multiple unknown changepoints over time in the inhomogeneous intensity of a spatio-temporal point process with spatial and temporal dependence within segments. We propose a new method for detecting changes by fitting a spatio-temporal log-Gaussian Cox process model using the computational efficiency and flexibility of integrated nested Laplace approximation, and by studying the posterior distribution of the potential changepoint positions. In this paper, the context of the problem and the research questions are introduced, then the methodology is presented and discussed in detail. A simulation study assesses the validity and properties of the proposed methods. Lastly, questions are addressed concerning potential unknown changepoints in the intensity of radioactive particles found on Sandside beach, Dounreay, Scotland.PostprintPeer reviewe

    inlabru: an R package for Bayesian spatial modelling from ecological survey data

    Get PDF
    1. Spatial processes are central to many ecological processes, but fitting models that incorporate spatial correlation to data from ecological surveys is computationally challenging. This is particularly true of point pattern data (in which the primary data are the locations at which target species are found), but also true of gridded data, and of georeferenced samples from continuous spatial fields. 2. We describe here the R package inlabru that builds on the widely used RINLA package to provide easier access to Bayesian inference from spatial point process, spatial count, gridded, and georeferenced data, using integrated nested Laplace approximation (INLA, Rue et al., 2009). 3. The package provides methods for fitting spatial density surfaces and estimating abundance, as well as for plotting and prediction. It accommodates data that are points, counts, georeferenced samples, or distance sampling data. 4. This paper describes the main features of the package, illustrated by fitting models to the gorilla nest data contained in the package spatstat (Baddeley, & Turner, 2005), a line transect survey dataset contained in the package dsm (Miller, Rexstad, Burt, Bravington, & Hedley, 2018), and to a georeferenced sample from a simulated continuous spatial field

    Non-stationary Gaussian models with physical barriers

    Get PDF
    The classical tools in spatial statistics are stationary models, like the Matern field. However, in some applications there are boundaries, holes, or physical barriers in the study area, e.g. a coastline, and stationary models will inappropriately smooth over these features, requiring the use of a non-stationary model. We propose a new model, the Barrier model, which is different from the established methods as it is not based on the shortest distance around the physical barrier, nor on boundary conditions. The Barrier model is based on viewing the Matern correlation, not as a correlation function on the shortest distance between two points, but as a collection of paths through a Simultaneous Autoregressive (SAR) model. We then manipulate these local dependencies to cut off paths that are crossing the physical barriers. To make the new SAR well behaved, we formulate it as a stochastic partial differential equation (SPDE) that can be discretised to represent the Gaussian field, with a sparse precision matrix that is automatically positive definite. The main advantage with the Barrier model is that the computational cost is the same as for the stationary model. The model is easy to use, and can deal with both sparse data and very complex barriers, as shown in an application in the Finnish Archipelago Sea. Additionally, the Barrier model is better at reconstructing the modified Horseshoe test function than the standard models used in R-INLA. (C) 2019 Elsevier B.V. All rights reserved.Peer reviewe
    • …
    corecore