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1 Summary10

1. Spatial processes are central to many ecological processes, but fitting models that incorporate spatial11

correlation to data from ecological surveys is computationally challenging. This is particularly true of12

point pattern data (in which the primary data are the locations at which target species are found), but13

also true of gridded data, and of georeferenced samples from continuous spatial fields.14

2. We describe here the R package inlabru that builds on the widely-used R-INLA package to provide easier15

access to Bayesian inference from spatial point process, spatial count, gridded, and georeferenced data,16

using integrated nested Laplace approximation (INLA, Rue et al., 2009).17

3. The package povides methods for fitting spatial density surfaces and estimating abundance, as well as for18

plotting and prediction. It accommodates data that are points, counts, georeferenced samples, or distance19

sampling data.20

4. This paper describes the main features of the package, illustrated by fitting models to the gorilla nest data21

contained in the package spatstat (Baddeley & Turner, 2005), a line transect survey data set contained22

in the package dsm (Miller et al., 2018), and to georeferenced sample from a simulated continuous spatial23

field.24

Keywords: Spatial modeling, point process, spatial count, georeferenced data, Bayesian inference25
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2 Introduction26

Many ecological datasets exhibit spatial correlation in observed variables, due to biotic or abiotic processes such27

as dispersal limitation, social aggregation, and spatial structure in unobserved explanatory variables. Whether28

the observations are points (e.g. animal locations), counts (e.g. the numbers of animals in spatial samples)29

or values of some continuous variable (e.g. nutrient levels at sampled points), spatial correlation causes every30

observation to depend on every other observation within some unknown correlation range. Dealing with this31

requires models that are mathematically more complex and computationally more demanding than is the case32

when there is independence among observations.33

We account for spatial dependence by incorporating a Gaussian random field (GRF) into models. GRFs are34

spatially continuous random processes in which random variables at any point in space are normally distributed35

and are correlated with random variables at other points in space according to a continuous correlation process.36

GRFs provide a means of modelling the spatial signal in the observations that cannot be accounted for by37

covariates.38

In the case of point data and count data, the GRF is linked to the response variable by a log link function,39

to give a log Gaussian Cox process (LGCP) model (Møller & Waagepetersen, 2007). (Called “log Gaussian”40

because the log of the intensity at any point is assumed to be normally distributed, and “Cox process” because41

this is a Poisson process that has a randomly varying intensity function.) What spatial statisticians call the42

“intensity” is the density in our context, and we will use the term “density” for this henceforth.43

The GRF is approximated by the solution to a stochastic partial differential equation (SPDE; see Lindgren44

et al., 2011, for details). We do not have space to describe the details of SPDEs, but fortunately the mathematical45

details need not be understood to use them in inlabru. It is sufficient to know that SPDEs provide an efficient46

way of approximating the GRF in continuous space (Simpson et al., 2016).47

Integrated nested Laplace approximation (INLA) Bayesian methods (Rue et al., 2009) are used for inference.48

INLA is a fast and accurate alternative to Markov chain Monte Carlo (MCMC) for fitting latent Gaussian49

models, i.e., hierarchical models in which there are unobserved (latent) normally distributed random variables.50

The models we consider here, in which the GRF is latent, are of this type. We refer the reader to the “Gentle51

INLA tutorial” at https://www.precision-analytics.ca/blog-1/inla for more about INLA, and to the R-52

INLA project at http://www.r-inla.org/ for more about the R-INLA package on which the inlabru package53

builds.54

The R-INLA package currently requires users to have knowledge of likelihood approximation schemes, and55

does not allow inference when detection probability is unknown, as is common in many wildlife surveys. The56

inlabru package makes fitting spatial models with INLA more accessible to non-specialist users by employing57

simpler syntax, and it extends the class of models that can be fitted to include distance sampling.58

We illustrate the scope of the package by fitting models to point and count data from a survey of gorilla59

(Gorilla gorilla) nests by Funwi-Gabga (2008), a line transect survey of pantropical spotted dolphins (Stenella60

2
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Figure 1: Pantropical dolphin survey data plotted using ggmap and the gm method. Grey triangles show the
inla.mesh object. The survey region boundary (black) is held in a SpatialPolygonsDataFrame. The line
transects (white lines) are held in a SpatialLinesDataFrame and the detected dolphins (red points) are held
in a SpatialPointsDataFrame.

attenuata) 1, and a simulated survey of a continuous spatial field. Other examples can be found at http:61

//inlabru.org/tutorials.62

3 Data format and visualization63

The inlabru package supports the sp package data structures (Pebesma & Bivand, 2005). These are well64

documented within sp, togeher with powerful functions for manipulating them. The SpatialPointsDataFrame65

structure stores spatial points together with spatial covariate data and attributes of points (e.g. size or species).66

SpatialLinesDataFrames store spatial data for line transect surveys and SpatialPolygonsDataFrames are67

used to define survey regions and sample plots.68

Continuous space is approximated in inlabru using a “mesh” (a tiling of space with triangular tiles – see69

Figure 1 for example). We use the inla.mesh class of object from the INLA package for this approximation.70

Data visualization tools in inlabru are built on the ggplot2 (Wickham, 2009) and ggmap (Kahle & Wickham,71

2013) packages, with customized inlabru functions such as gg and gm to extend their functionality. Figure 172

shows an example of such a plot generated from a line transect survey of pantropical spotted dolphins in the73

Gulf of Mexico.74

4 Key syntax75

Models are defined by specifying76

1. a formula for the linear or nonlinear predictor that defines the log density function,77

2. the components of this predictor (one of which is typically an SPDE), and78

3. the observed variable distribution.79

1see http://seamap.env.duke.edu/dataset/25) for details of this survey
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Figure 2: Analysis of gorilla nests as a count and as a point process model. Panel (a) depicts the survey region,
search plots, undetected (blue) and detected (red) nests, including the nest counts (white boxes). Panel (b)
shows a density fit with bru to nest counts, associating counts with the plot centres. Panels (c) and (d) show
point process fits obtained with lgcp using nests within the plots, and all, respectively.

Models are fitted using the function bru( ) or, for LGCP models, lgcp( ). Examples are given below.80

5 Spatial count data81

We begin by using inlabru to infer a smooth spatial density surface from plot samples in which the response is82

the count of gorilla nests in each plot (see Figure 2 (a)). Although the exact locations of all nests were recorded,83

we initially use only nest counts in a sample of plots. The R code showing how to load the package and the84

data is provided as Supporting Information S1.85

The observed response, count, is the number of nests in a plot, which we assume to be a Poisson random86

variable. We also assume that the log density of the Poisson distribution varies in space and is the sum of an87

intercept term (the base log density) and an SPDE (which captures the spatially correlated variation about the88

base). We name the SPDE spat2. Recall that the SPDE approximates a GRF, and we specify below that the89

correlation of this field has a Matérn correlation structure. This correlation model (with unknown parameters)90

is specified using the INLA function inla.spde2.matern. The SPDE and correlation model are defined on a91

mesh, which we do not show here because it obscures important elements of the plots (see Figure 1 for an92

example of a mesh).93

The two components of our linear predictor are the intercept and the SPDE. We store these in an object94

called cmp as follows:95

2This name can be chosen by the user.
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cmp <- count ~ spat(map = coordinates, model = inla.spde2.matern(mesh)) + Intercept

The syntax for defining SPDEs requires a name for the SPDE (“spat” here), followed by specification,96

in brackets, of the domain on which it is defined (“map=coordinates” here), and its correlation function97

(“model=inla.spde2.matern(mesh)” here). Note that coordinates is a method defined by the package sp98

to extract locations from sp spatial objects. Using it as above specifies that the SPDE applies to spatial99

coordinates.100

We use the inlabru function bru to fit the model to the gorilla count data gcounts (a SpatialPointsDataFrame101

with a data field count containing the nest count data):102

fit <- bru(components = cmp,

family = "poisson",

data = gcounts,

formula = ~ spat + Intercept,

options = list(E = gcounts$exposure))

The components parameter specifies the model components. The family parameter specifies the probability103

density function (PDF) of the response. (All family types supported by the INLA package are supported by104

inlabru.) The formula specifies how the components are combined to create a linear (in this case) predictor for105

density. The parameter E in the options list sets the “exposure” parameter of the Poisson family, namely the106

areas of each searched plot in this example. (The log of the exposure would be an offset in a Poisson generalised107

linear model.)108

We did not need to specify the formula above, because inlabru assumes that it is the sum of the components109

if no formula is given. The formula is really only required when it is not this sum (see examples in Sections 6.2110

and 6.3 below).111

We can predict any function of any subset of the components of the model specification (cmp above) using112

inlabru’s predict function. For example, predictions of the density are obtained as follows:113

pxl <- pixels(mesh, mask = boundary)

dens <- predict(fit, pxl, formula = ~ exp(spat + Intercept))

The first line creates a regular grid of locations covering the survey region. The third argument of the114

predict call specifies what is to be predicted, as a function of the components. To predict on the scale of115

the linear predictor, for example, we would just replace exp(spat+Intercept) with spat+Intercept. The116

predict function estimates the posterior densities of whatever function is specified in its formula argument.117

The object obtained from predict is a SpatialPixelsDataFrame. As with any other spatial object, we can118

employ the gg function to add it to a blank plot. Hence, calling ggplot() + gg(dens) will render the density119

shown in Figure 2 (b).120
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6 Fitting point processes121

We now consider the case in which the data are the locations of nests within plots. Some information about122

the spatial process governing nest locations is lost when locations are aggregated into counts within plots, and123

we would like to use all the information in the data. In this case, the response variables are the coordinates124

of the individual nests, and the locations are random variables, whereas with count data the locations of the125

plots were fixed and known and the counts were random variables. Spatial point processes models (Møller &126

Waagepetersen, 2007; Illian et al., 2008; Baddeley et al., 2015) are used when the points themselves are the127

random variables. More specifically, we use an LGCP, in which the log density includes a GRF, to model128

overdispersion and clustering that cannot be accounted for by covariates.129

6.1 Inference for spatial Poisson point processes130

The work flow of inference in point processes fitting is similar to that described above. We specify the model131

by replacing the user-defined response “count” on the left of the component specification, with the key word132

“coordinates” to indicate that the responses are spatial coordinates.133

cmp <- coordinates ~ spat(map = coordinates, model = inla.spde2.matern(mesh)) + Intercept

The R code showing how to load the data is provided in Supporting Information S1. Fitting an LGCP134

model is done using lgcp:135

fit <- lgcp(components = cmp, data = plotnests, samplers = plots)

Here plotnests is a SpatialPointsDataFrame containing the locations of the observed nests. The samplers136

argument is passed a SpatialPolygonsDataFrame called plots that specifies the polygons that were searched.137

If this argument is left empty, lgcp will assume that the whole domain defined by the mesh (contained in the138

SPDE specification, spat, in cmp) was searched, which would result in biased inference if the whole domain was139

not searched.140

Running the code above and then using predict and plot yields the density plot shown in Figure 2 (c). For141

comparison, Figure 2 (d) shows a LGCP fit to the complete gorilla nest data set, which was obtained as above142

but with samplers=boundary in place of samplers=plots, where boundary is a SpatialPolygonsDataFrame143

object defining the survey boundary.144

6.2 Inference for univariate point processes: distance sampling detection function145

We illustrate inlabru’s ability to model one-dimensional point processes by fitting a detection function to the146

perpendicular distances of detected dolphins on the line transect survey shown in Figure 1. The R code showing147

how to load and prepare the data is provided as Supporting Information S2.148

The observed density of distances to detections is the product of the underlying density of distances to dol-149

phins (λ(d) say, where d is distance) and the probability of detecting a dolphin that is at distance d (h(d; log{σ})150

6
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Figure 3: Pantropical dolphin detection distances (left) and fitted hazard rate detection function (right), showing
95% credibile region. With adequate fit, the red line is a smooth through the histogram, as is apparent here.

say, where log{σ} is an unknown parameter). Under the usual line transect assumption that animals are uni-151

formly distributed with respect to distance from the line, λ(d) = λ so that the density of the observed distance152

process is h(d; log{σ})λ. Hence the log density can be written as log[h(d; log{σ})] + β0, where λ = eβ0 .153

We specify the (nonlinear) predictor for this model, and its components, as follows:154

fml <- distance ~ log(h(distance, lsig)) + Intercept

cmp <- distance ~ lsig + Intercept

where h(distance,lsig) is h(d, log{σ}) and Intercept is β0 = log(λ). To complete the specification we155

need to define the function h(distance,lsig). We define it to be the hazard-rate detection function of Hayes156

& Buckland (1983), with shape parameter 1, as follows:157

h <- function(distance, lsig){ 1-exp(-(distance/(exp(lsig)))^-1)}.

Because one of the components (the parameter lsig) enters the linear predictor for log density via a non-158

linear function, log[h(d; log{σ})], we need to specify the formula explicitly, rather than have inlabru construct159

it by default as the sum of the components. This model is fitted using lgcp as follows:160

fit <- lgcp(cmp, mexdolphin$points, formula = fml).

where mexdolphin$points is a SpatialPointsDataFrame with a variable distance for every point.161

After fitting the model, predicting the detection function for distances 0 to 8 (the maximum distance162

considered) is straightforward using163

pts <- data.frame(distance = seq(0,8, by = 0.1)),

dfun <- predict(fit, pts, formula = ~ h(distance, lsig)

while plot(dfun) plots it with 95% credible interval (as shown in Figure 3).164

We note in passing that inlabru can be used to estimate any PDF using commands similar to those above,165

if we consider the intensity of a Poisson process to be an unnormalized PDF.166
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6.3 Inference for thinned Poisson processes: distance sampling167

We now use inlabru to estimate the density and distribution of dolphin groups with the conventional distance168

sampling assumption of uniform group distribution within searched strips. This assumption is tenable because169

the searched strips have negligible width compared to the size of the survey region (see Figure 1) and were170

laid down with random start location. We implement the assumption by simultaneously modelling the spatial171

distribution of detected points (as in Section 6.1) and the PDF of distances of detections from the lines, assuming172

uniform distribution of these distances (as in Section 6.2). The R code for this is provided as Supporting173

Information S4.174

An analysis of these data (also assuming uniform group distribution within searched strips) using the R pack-175

age dsm is available at http://distancesampling.org/R/vignettes/mexico-analysis.html. The methods176

implemented in inlabru and dsm differ in a number of ways, including that inlabru implements a fully-Bayesian177

approach, so one can specify priors on parameters (not illustrated here), and inlabru estimates detection prob-178

ability and the density surface simultaneously, while dsm estimates detection probability in one step and the179

density surface conditional on this estimate, in another.180

The key to simultaneous estimation of detection probability and the density surface is the fact that if181

the locations of points arise from a Poisson process, then the locations of the detected points arise from a182

thinned Poisson process. “Thinning” involves detecting points with some probability (h, say) that is less than183

1. The density (intensity) of a thinned Poisson process is the unthinned density D, multiplied by the thinning184

probability h. For example, if h = 0.5 so that half the points are detected on average, then the density of185

detected points is half that of the all points: Dh = D/2. On a line transect survey, the probability of missing å186

point depends on its distance d from the line, so that h is a function of distance (h(d)) and the density of the187

thinned Poisson process at the point’s location is Dh(d), where D is the underlying density at this location.188

Writing D as D = exp(Intercept) and noting that Dh(d) = exp(Intercept+log(h(d)), we see that the log density189

of the thinned Poisson process is equal to the log density of the underlying process plus the log of the detection190

probability. This is convenient, because it means that we can do inference for thinned LGCPs by simply adding191

a term for the thinning probability to the log density.192

With this in mind, and noting that the thinning probability has an unknown parameter that we call lsig,193

we specify our model by combining the components specification and formula specifications from Sections 6.1194

and 6.2.195

cmp <- ~ spat(map = coordinates, model = inla.spde2.matern(mesh)) + lsig + Intercept

fml <- coordinates + distance ~ spat + log(h(distance, lsig)) + log(1/8) + Intercept

The left hand side of the formula (coordinates + distance) tells inlabru that we are modelling both the196

spatial point process governing dolphin group locations, and the detection distances. The right hand side says197

that the log density of this process is the sum of the log detectability and the spatial process composed of the198

spatial SPDE, and the Intercept. The offset term log(1/8) specifies that the density of distances is assumed199

8
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Figure 4: Predicted density surface (in counts per square km) of a point process model for dolphin groups fitted
jointly with a hazard rate detection function (not shown).

to be constant on the distance interval (0, 8) – as the transect half-width is 8 km.200

With the above definitions, fitting the model is straightforward using the same syntax as shown in Section 6.1,201

where now the samplers argument is a SpatialLinesDataFrame storing the survey’s ship transects. The202

prediction code introduced in Section 5 is then used to estimate the spatial density surface shown in Figure 4(a).203

We can add further processes, such as a group size probability model. This allows us to make detection204

probability depend on group size and to model a spatially varying group size distribution. We do not illustrate205

this here for lack of space.206

7 Georeferenced data from a continuous spatial field207

We illustrate spatial modelling from a continuous spatial field by sampling the simulated field (which might cor-208

respond to a soil nutrient level, for example) shown in Figure 5(a), at the locations of the crosses in that figure.209

Having specified a Matérn correlation function using inla.spde2.matern in a similar way to that shown pre-210

viously, and given that the sampled observations are in the observed data field of a SpatialPointsDataFrame211

named geosamp, the model is fitted as follows, assuming a Gaussian error model:212

cmp <- observed ~ field(map = coordinates, model = inla.spde2.pcmatern(mesh)) + Intercept

fit <- bru(components = cmp, data = geosamp, family = "gaussian")

(Here we have named the SPDE “field” rather than “spat”.)213
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Figure 5: (a) A simulated continuous spatial field, showing sample locations, (b) the posterior mean of the
model fitted to the sample data, and (c) a sample from the posterior distribution of the field.
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The mean of the fitted model is shown in Figure 5(b), while a sample from the posterior distribution of the214

field is shown in Figure 5(c). Note that the mean surface is necessarily smoother than the true field (which is215

conceptually a draw from a random field with the given mean), while the posterior sample better reflects the216

fine-scale structure of the true field.217

8 Discussion218

The inlabru package makes Bayesian spatial modelling with INLA, including point process modelling, more219

accessible to ecologists. It allows one to model species distribution and estimate density and abundance with220

data that are (a) complete spatial maps of the locations of individuals or groups, (b) counts in plots, (c) points,221

and (d) distance sampling data.222

It is distinguished from methods and software that fit density surfaces to count data in that it can deal with223

points as responses in continuous space and does not require that space be discretised (although inlabru can224

deal with such data, as illustrated in Section 5 above). Nor does it require a neighbourhood structure to be225

defined, as is required for conditional autoregressive models or simultaneous autoregressive models, for example.226

It also provides a means of doing Bayesian spatial modelling with distance sampling data. Its distance227

sampling capabilities are not as well developed as those of the frequentist package dsm (Miller et al., 2018),228

and unlike dsm, it estimates the detection probability and density surface simultaneously. It shares this feature229

with the frequentist package unmarked (Fiske & Chandler, 2011), although unmarked has no spatial modelling230

capabilities. Simultaneous estimation of detection probability and the density surface is conceptually satisfying,231

but the jury is out on whether this, or estimation of the two in separate steps, is preferable in practice.232

Features of inlabru that we do not have space to describe include its ability to do temporal and spatio-233

temporal modelling and its ability to simultaneously estimate the density of a point process and the spatially-234

varying density of what spatial statisticians call “marks” on points (dolphin group size, being an example) as235

well as its impact on the shape of the detection function.236

Features under development include point transect data, modelling multi-species density when there is237

spatial interaction or common explanatory environmental data for the distribution of different species sharing238

a habitat, and modelling of habitat preference based on telemetry data. There are some technical obstacles to239

implementing spatial capture-recapture methods (Efford, 2004; Borchers & Efford, 2008; Royle & Young, 2008)240

in inlabru, but work in this area is ongoing.241
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Supplementary Material244

RMarkdown scripts:245

• Supporting Information S1: 1 spatial gorilla models.Rmd. Code for spatial Poisson count and LGCP246

inference.247

• Supporting Information S2: 2 dfun univariate.Rmd. Code for detection function inference.248

• Supporting Information S3: 3 distsamp.Rmd. Code for line transect models.249

• Supporting Information S4: 4 georefsim.Rmd Code for models for georeferenced data.250
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