8 research outputs found

    The effect of steps to promote higher levels of farm animal welfare across the EU. Societal versus animal scientists’ perceptions of animal welfare

    Get PDF
    Information about animal welfare standards and initiatives from eight European countries was collected, grouped, and compared to EU welfare standards to detect those aspects beyond minimum welfare levels demanded by EU welfare legislation. Literature was reviewed to determine the scientific relevance of standards and initiatives, and those aspects going beyond minimum EU standards. Standards and initiatives were assessed to determine their strengths and weaknesses regarding animal welfare. Attitudes of stakeholders in the improvement of animal welfare were determined through a Policy Delphi exercise. Social perception of animal welfare, economic implications of upraising welfare levels, and differences between countries were considered. Literature review revealed that on-farm space allowance, climate control, and environmental enrichment are relevant for all animal categories. Experts’ assessment revealed that on-farm prevention of thermal stress, air quality, and races and passageways’ design were not sufficiently included. Stakeholders considered that housing conditions are particularly relevant regarding animal welfare, and that animal-based and farm-level indicators are fundamental to monitor the progress of animal welfare. The most notable differences between what society offers and what farm animals are likely to need are related to transportation and space availability, with economic constraints being the most plausible explanation

    Chlamydial infections in feral pigeons in Europe: review of data and focus on public health implications

    No full text
    Feral pigeons (Columba livia domestica), which thrive in most European towns and cities, are commonly infected with the zoonotic bacterium Chlamydophila psittaci, the agent of psittacosis (also known as ornithosis) in humans. A number of surveys carried out over the last thirty years across Europe have detected high seropositivity values and high percentages of infection in feral pigeon populations. Overall, when considering data from 11 European countries, seropositivity values to C. psittaci in the sampled populations ranged from 19.4% to 95.6%. In most surveys, the complement fixation test was used, and antibodies were detected in 19.4\u201366.3% of the samples, with a median of 46.1%. Indirect immunofluorescence and ELISA tests were employed less frequently, but led to the detection of higher percentages of seropositivity (23.7\u201367.7% and 35.9\u201395.6%, respectively). Attempts to grow C. psittaci in cell culture or embryonated chicken eggs were successful in 2\u201342.3% and 0\u201357.1% of samples, respectively, antigen detection methods were positive in 2.3\u201340% of samples, while conventional PCR and real-time PCR using different genomic targets detected the organism in 3.4\u201350% of samples. Twenty-five C. psittaci isolates from pigeons were typed as ompA genotype B (n = 14), E (n = 10) and E/B (n = 1). The huge increase of feral pigeon populations in Europe is a major cause of concern for the detrimental effect of pigeon droppings on environmental hygiene, in addition to the extensive damage due to the fouling of buildings and monuments. The most important pathogenic organism transmissible from feral pigeons to humans is C. psittaci, with 101 cases of disease reported in the literature. Exposure to C. psittaci-contaminated dust, direct contact with pigeons through handling and, to a lesser extent, through pigeon feeding have been identified as hazardous exposures in more than half of the human cases, while loose or transient contacts with feral pigeons have been mentioned in about 40% of the cases

    Chlamydial infections in feral pigeons in Europe : review of data and focus on public health implications

    No full text
    Feral pigeons (Columba livia domestica), which thrive in most European towns and cities, are commonly infected with the zoonotic bacterium Chlamydophila psittaci, the agent of psittacosis (also known as ornithosis) in humans. A number of surveys carried out over the last thirty years across Europe have detected high seropositivity values and high percentages of infection in feral pigeon populations. Overall, when considering data from 11 European countries, seropositivity values to C. psittaci in the sampled populations ranged from 19.4% to 95.6%. In most surveys, the complement fixation test was used, and antibodies were detected in 19.4-66.3% of the samples, with a median of 46.1%. Indirect immunofluorescence and ELISA tests were employed less frequently, but led to the detection of higher percentages of seropositivity (23.7-67.7% and 35.9-95.6%, respectively). Attempts to grow C. psittaci in cell culture or embryonated chicken eggs were successful in 2-42.3% and 0-57.1% of samples, respectively, antigen detection methods were positive in 2.3-40% of samples, while conventional PCR and real-time PCR using different genomic targets detected the organism in 3.4-50% of samples. Twenty-five C. psittaci isolates from pigeons were typed as ompA genotype B (n=14), E (n=10) and E/B (n=1). The huge increase of feral pigeon populations in Europe is a major cause of concern for the detrimental effect of pigeon droppings on environmental hygiene, in addition to the extensive damage due to the fouling of buildings and monuments. The most important pathogenic organism transmissible from feral pigeons to humans is C. psittaci, with 101 cases of disease reported in the literature. Exposure to C. psittaci-contaminated dust, direct contact with pigeons through handling and, to a lesser extent, through pigeon feeding have been identified as hazardous exposures in more than half of the human cases, while loose or transient contacts with feral pigeons have been mentioned in abou 40% of the cases. Education initiatives as to the communication of a health risk resulting from contact with pigeons and pigeon excreta should primarily be targeted at individuals who may be exposed to C. psittaci-contaminated dust, such as demolition/construction workers. Recommendations to this category of workers include wearing protective clothes with hoods, boots, gloves and air filter face masks when removing pigeon faeces from roofs, garrets and buildings, especially if working indoors. Monitoring for C. psittaci infections in these workers over time should also be considered. Children should be warned not to handle sick or dead pigeons, and immunocompromised individuals should be advised to carefully limit their contact to feral pigeons. Culling of pigeons by shooting or poisoning is both unethical and ineffective as the place of the killed birds in the population is quickly filled by new juveniles or immigrating birds from neighbouring areas. Pigeon-deterring systems, such as nets and plastic or metal spikes applied to buildings and monuments will prevent their fouling, and the administration of contraceptive drugs may allow size regulation of the pigeon populations. Nevertheless, the measure that will ultimately lead to permanent reduction and will establish healthy sustainable populations is the restriction of indiscriminate feeding by pigeon lovers. The erection of dovecotes and artificial breeding facilities should be considered for providing shelter and a balanced diet to the birds, as well as a chance of interaction for pigeon lovers in a hygienically controlled environment

    Mapping farm animal welfare education at university level in Europe

    No full text
    The aim of this study was to map farm animal welfare university education in an enlarged Europe with emphasis on identifying existing differences and gaps. Information on 210 courses dealing with farm animal welfare from 98 universities in 26 European countries were obtained. Statistical analysis was carried out on 155 of these courses within animal science or veterinary programmes, at Bachelor and Master level and with the countries grouped into five regions (North West Europe, Mediterranean, West Central Europe, East Central Europe and Balkans). There were significantly more hours of teaching in animal welfare in the North West region of Europe. This region also had more 'interactive' education methods, eg group discussion and farm visits, whereas West Central Europe had most 'transmissive' methods, eg lecturing. A course was more likely to be given in English in North West Europe (even when the UK and the Republic of Ireland were excluded from the analysis) and East Central Europe compared to West Central Europe and the Balkans. There appeared to be no regional differences in the content of the courses although the focus was significantly more 'applied', ie towards welfare assessment and legislation in the veterinary education and more 'fundamental', ie oriented towards ethology, physiology and ethics, in the animal science education. In summary, the main differences in farm animal welfare education across Europe seem to be in the reduced number of hours of education, less interactive teaching and fewer courses in English available to students outside the North West region. © 2014 Universities Federation for Animal Welfar
    corecore