12 research outputs found

    Numerical Studies of the Solar Energetic Particle Transport and Acceleration

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76215/1/AIAA-2005-4928-462.pd

    Theoretical modeling for the stereo mission

    Get PDF
    We summarize the theory and modeling efforts for the STEREO mission, which will be used to interpret the data of both the remote-sensing (SECCHI, SWAVES) and in-situ instruments (IMPACT, PLASTIC). The modeling includes the coronal plasma, in both open and closed magnetic structures, and the solar wind and its expansion outwards from the Sun, which defines the heliosphere. Particular emphasis is given to modeling of dynamic phenomena associated with the initiation and propagation of coronal mass ejections (CMEs). The modeling of the CME initiation includes magnetic shearing, kink instability, filament eruption, and magnetic reconnection in the flaring lower corona. The modeling of CME propagation entails interplanetary shocks, interplanetary particle beams, solar energetic particles (SEPs), geoeffective connections, and space weather. This review describes mostly existing models of groups that have committed their work to the STEREO mission, but is by no means exhaustive or comprehensive regarding alternative theoretical approaches

    >

    No full text

    Three‐dimensional MHD Simulation of the 2003 October 28 Coronal Mass Ejection: Comparison with LASCO Coronagraph Observations

    No full text
    We numerically model the coronal mass ejection (CME) event of 2003 October 28 that erupted from AR 10486 and propagated to Earth in less than 20 hr, causing severe geomagnetic storms. The magnetohydrodynamic (MHD) model is formulated by first arriving at a steady state corona and solar wind employing synoptic magnetograms. We initiate two CMEs from the same active region, one approximately a day earlier that preconditions the solar wind for the much faster CME on the 28th. This second CME travels through the corona at a rate of over 2500 km s−1, driving a strong forward shock. We clearly identify this shock in an image produced by the Large Angle Spectrometric Coronagraph (LASCO) C3 and reproduce the shock and its appearance in synthetic white-light images from the simulation. We find excellent agreement with both the general morphology and the quantitative brightness of the model CME with LASCO observations. These results demonstrate that the CME shape is largely determined by its interaction with the ambient solar wind and may not be sensitive to the initiation process. We then show how the CME would appear as observed by wide-angle coronagraphs on board the Solar Terrestrial Relations Observatory (STEREO) spacecraft. We find complex time evolution of the white-light images as a result of the way in which the density structures pass through the Thomson sphere. The simulation is performed with the Space Weather Modeling Framework (SWMF)

    Space Weather Modeling Framework: A new tool for the space

    No full text
    This paper presents the design and implementation of the SWMF and some demonstrative tests. Future papers will describe validation (comparison of model results with measurements) and applications to challenging space weather event
    corecore