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Abstract We summarize the theory and modeling efforts for the STEREO mission, which

will be used to interpret the data of both the remote-sensing (SECCHI, SWAVES) and in-situ
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instruments (IMPACT, PLASTIC). The modeling includes the coronal plasma, in both open

and closed magnetic structures, and the solar wind and its expansion outwards from the Sun,

which defines the heliosphere. Particular emphasis is given to modeling of dynamic phe-

nomena associated with the initiation and propagation of coronal mass ejections (CMEs).

The modeling of the CME initiation includes magnetic shearing, kink instability, filament

eruption, and magnetic reconnection in the flaring lower corona. The modeling of CME prop-

agation entails interplanetary shocks, interplanetary particle beams, solar energetic particles

(SEPs), geoeffective connections, and space weather. This review describes mostly existing

models of groups that have committed their work to the STEREO mission, but is by no means

exhaustive or comprehensive regarding alternative theoretical approaches.

Keywords STEREO mission . Solar corona . Solar wind . Coronal mass ejection (CME) .

Solar filaments . Heliosphere . Interplanetary shocks . Interplanetary particle beams . Solar

energetic particle events (SEP) . Solar flares . Space weather . Stereoscopy . 3D

reconstruction techniques . White-light emission . EUV emission . Interplanetary radio

emission
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Theoretical Modeling for the STEREO Mission

1 Introduction

Theoretical modeling is of particular importance for the Solar TErrestrial RElations Ob-
servatory (STEREO) mission because we obtain for the first time mission-dedicated 3-
dimensional (3D) information of solar-terrestrial phenomena. Some 3D modeling has been

accomplished before, of course, e.g., by means of solar-rotation tomography, combined imag-

ing and Doppler-spectroscopy, or multiple in-situ spacecraft observations of the solar wind

(such as with CLUSTER), but STEREO is the first mission dedicated to study the 3D evo-

lution of CMEs and the solar wind from stereoscopic vantage points. Realistic models of

the 3D structure and dynamics of solar/heliospheric plasma and particles are needed to fully

exploit the science return of the data, for our exploration of the unknown physical processes

whose outcome we are observing, as envisioned in a number of anticipatory pre-launch papers

(Grigoryev, 1993; Pizzo et al., 1994; Davila et al., 1996; Schmidt and Bothmer, 1996; Socker

et al., 1996, 2000; Rust et al., 1997; Socker, 1998; Liewer et al., 1998; Howard et al., 2002;

Davila and St. Cyr 2002; Mueller et al., 2003). Table 1 gives an overview of what the four in-

strument suites of the two STEREO spacecraft will yield: SECCHI/EUVI will image the solar

corona, eruptive filaments, flares, and coronal mass ejections (CMEs) in the lower corona at

EUV wavelengths. SECCHI/COR and HI will image the CME phenomena that propagate

to the outer corona in white light. SWAVES will triangulate the radio emission generated

by CMEs and interplanetary shocks and particle beams. The IMPACT and PLASTIC instru-

ments are in-situ particle detectors that measure particle distribution functions and elemental

abundances at 1 AU in the solar wind or in passing CMEs, interplanetary shocks, particle

beams, or in solar energetic particle (SEP) events. The theoretical modeling of all these pro-

cesses includes both magneto-hydrodynamic (MHD) and kinetic theories. A great potential,

but also challenge, is the unprecedented computer power that supports these theoretical and

numerical modeling efforts today, never available to such a large extent in previous missions.

We organize this review in the following order: First we describe theoretical mod-

eling of the solar/heliospheric background plasma (solar corona in Section 2, solar

Table 1 Metrics of modeled solar/heliospheric phenomena versus detecting STEREO instruments

SECCHI

EUVI, COR /HI SWAVES IMPACTa PLASTIC

Background plasma

Solar corona (Section 2) EUV, WL . . . . . . . . .

Solar wind (Section 3) . . . Waves Particles Particles

CME Initiation

Filament eruption (Section 4) EUV, WL . . . . . . . . .

Coronal mass ejection launch

(Section 5)

EUV, WL Radio, waves . . . . . .

CME Propagation

Interplanetary shocks (Section 6) WL Radio, waves Particles Particles

Interplanetary particle beams

(Section 7)

. . . Radio, waves Particles Particles

Solar energetic particle events

(Section 8)

. . . . . . Particles Particles

Geo-connected space weather

(Section 9)

. . . . . . Particles Particles

aIMPACT will also be able to make in-situ measurements of the magnetic field at 1 AU
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wind in Section 3), then processes of CME initiation (filament eruption in Section 4,

CME launch in Section 5), and finally processes of interplanetary CME propagation (in-

terplanetary shocks in Section 6, interplanetary particle beams and radio emission in

Section 7, solar energetic particles in Section 8, geoeffective events and space weather in

Section 9).

2 Modeling of the Solar Corona

2.1 Physical 3D-Modeling of the Global Corona

The quantitative analysis of stereoscopic EUV images requires full 3D models of the electron

density ne(x, y, z) and electron temperature Te(x, y, z) of the coronal plasma, so that emission

measure images E M(x, y) can be self-consistently produced by integrating the differential
emission measure (DEM) distribution, i.e., d E M(x, y, T )/dT = ∫ n2

e(x, y, z, T )dz, along

each stereoscopic line-of-sight direction z. In addition, the DEM depends also on assumptions

on elemental abundances and ionization equilibrium (see Section 5.2 for more details and

references). The most detailed state-of-the-art models represent the inhomogeneous 3D solar

corona with up to ≈105 coronal loop structures, each one calculated based on a physical model

(e.g., Schrijver et al., 2004). A key observable input is a (synoptic) full-Sun magnetogram of

the photospheric magnetic field as a boundary condition, which can be extrapolated into the

3D corona by means of a potential field (source surface) model or a nonlinear force-free field

model. An energy input into the corona has to be assumed, which could be a function of the

local magnetic field strength B(x, y) at the footpoint and the loop length L(x, y), yielding

a local Poynting flux (or heating rate) of EH (x, y) ∝ Ba(x, y)Lb(x, y) at position (x, y).

The physical model of a coronal loop can then be specified by a hydrostatic equilibrium

solution, where the heating rate is balanced by the conductive and radiative losses, e.g., the

RTV solutions known for uniform heating and constant pressure (Rosner et al., 1978), the

RTVS solutions corrected for non-uniform heating and gravitation (Serio et al., 1981), or

empirical scaling laws inferred from Yohkoh observations (Kano and Tsuneta, 1995). The

latest TRACE studies imply deviations from the equilibrium scaling laws because of the

asymmetric heating functions caused by flows (Winebarger et al., 2002). The emission mea-

sures d E M(x, y, z, T )/dT of the physical loops can then be filled into a datacube (x, y, z)

aligned with a (stereoscopic) direction z and integrated along this line-of-sight. Full-Sun

visualizations based on such physical models have been simulated for soft X-ray and EUV

instruments (Figure 1). The input parameters (such as the magnetic field model or the heating

scaling law) can then be varied until the simulated images show the best match (quantified

by a χ2-value) with an observed soft X-ray or EUV image. Fitting two stereoscopic EUV

images from SECCHI/EUVI simultaneously with the same physical 3D model obviously

represents a very powerful method to constrain the heating function, a key observable in the

coronal heating problem.
The 3D reconstructions of the magnetic field and electron density of the global corona

have been attempted for decades (e.g., Altschuler, 1979): from line-of-sight inversions of the

white-light polarization (e.g., Van de Hulst, 1950; Lamy et al., 1997; Llebaria et al., 1999;

Quémerais and Lamy, 2002), from synoptic maps combined with magnetic field extrapola-

tions (Liewer et al., 2001), from stereoscopic image pairs in soft X-rays (Batchelor, 1994),

from stereoscopic or multi-frequency images in radio (Aschwanden and Bastian, 1994a,b;

Aschwanden et al., 1995, 2004; Aschwanden, 1995), from tomographic multi-image se-

quences in soft X-rays or EUV (Hurlburt et al., 1994; Davila, 1994; Zidowitz et al., 1996;
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Fig. 1 Full-Sun visualization of stereoscopic corona modeling: soft X-ray images from Yohkoh/SXT from two
different aspect angles (top row), and simulated 3D corona images (bottom row), both shown on a logarithmic
scale with a total range of 4 orders of magnitude in brightness. The theoretical 3D model is based on the
observed magnetic field on the solar surface, a potential magnetic field model, a heating function, hydrostatic
solutions of ≈50,000 individual coronal loops, and convolution with the filter response functions (Schrijver
et al., 2004)

Zidowitz, 1997, 1999; Frazin and Kamalabadi, 2005), or from DEM-tomographic multi-filter

images (Frazin, 2000; Frazin and Janzen, 2002; Frazin et al., 2005). However, these recon-

structions of the 3D density ne(x, y, z) of the global corona have only been demonstrated

with a resolution of �15◦ in longitude, mostly limited by the time variability over the time-

span of substantial rotation. Such approaches can characterize the smooth 3D density of the

background corona, but cannot be used to reconstruct elementary coronal loop structures

(which require a spatial resolution of �1′′). However, some numerical simulation studies

have zoomed into partial views of the 3D corona, rendering active regions on the level

of elementary loops, based on hydrodynamic loop models (Gary, 1997; Alexander et al.,
1998) or full-scale MHD simulations with realistic plasma heating from photospheric drivers

(Gudiksen and Nordlund, 2002, 2005a,b; Mok et al., 2005).
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2.2 Stereoscopic 3D-Reconstruction of Coronal Loops

Although stereoscopic observations with two spacecraft provide only limited constraints

for 3D modeling of the global corona, the 3D reconstruction of a single elementary loop

structure should be much better constrained, if we succeed to isolate a single loop by appro-

priate subtraction of the background corona, which consists of myriads of other competing

loop structures. 3D reconstructions of elementary loop structures are of fundamental im-

portance for studying the physical plasma properties, their (MHD) dynamics, the associated

(non-potential) magnetic field and electric currents (e.g., Aschwanden, 2004, Sections 3–8).

The mathematical determination of the 3D geometry of a single loop has been formu-

lated for planar loops (Loughhead et al., 1983) as well as for non-planar loops (Berton

and Sakurai, 1985). The determination of the 3D position of a point-like feature, such as

the loop centroid in a particular viewing plane, is essentially a triangulation method in

epipolar planes (Portier-Fozzani and Inhester, 2001, 2002), also called tiepoint method
(Figure 2) in some applications to solar stereoscopy (Liewer et al., 2000; Hall et al.,
2004).

Such stereoscopic 3D reconstructions of single loops have been attempted in the past

by using the solar rotation to mimic two different viewing angles, which of course works

only for stationary loops. 3D reconstructions of single coronal structures (threads, rays,

Fig. 2 Stereoscopic 3D reconstruction of individual loops in EUV images using the tie-point method. Two cor-
responding loop structures have to be identified in a pair of images, pinpointed with tiepoints for triangulation
of their 3D geometry (courtesy of Eric DeJong and Paulett Liewer)
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streamers) aligned with individual coronal magnetic field lines have been achieved from

white-light images taken 1–3 h apart (Koutchmy and Molodensky, 1992; Vedenov et al.,
2000). In order to make solar-rotation stereoscopy more general, the concept of dynamic
stereoscopy has been developed for the 3D reconstruction of coronal loops, which relies

more on static magnetic fields, rather than on static brightness maps (Aschwanden et al.,
1999, 2000). Alternative 3D reconstructions of magnetic field lines combine theoretical

3D magnetic field models with the observed 2D projection of a coronal loop from an EUV

image (Gary and Alexander, 1999; Wiegelmann and Neukirch, 2002; Wiegelmann and

Inhester, 2003; Wiegelmann et al., 2005), which can be even more strongly constrained

by two simultaneous projections from two STEREO spacecraft (Wiegelmann and Inhester,

2006). Forward-fitting techniques using some a priori constraints are expected to be

superior to straightforward backprojection techniques (Gary et al., 1998). The efficiency of

stereoscopic correlations can be considerably enhanced with automated detection of loops,

e.g., with the oriented-connectivity method (Lee et al., 2005; Aschwanden, 2005), with

help of extrapolated magnetic field lines (Wiegelmann et al., 2005), or even by constraining

the heating input with subsurface (magnetoconvection) dynamics (Hurlburt et al., 2002).

Stereoscopy of coronal loops is expected to be most suitable at small separation angles

(�30◦), which has to take place in the initial phase (during the first year) of the STEREO

mission.

3 Modeling of the Solar Wind

In order to understand the propagation of CMEs and energetic particles from the corona

through the heliosphere, detailed time-dependent models of the background plasma and so-

lar wind are required. Solar wind models can be subdivided depending on their boundary

conditions, either given by the magnetic field in the lower corona (Section 3.1), or by helio-

spheric conditions (Section 3.2). Recent space weather models involve the fully connected

Sun-to-Earth system by coupling in with magnetospheric and ionospheric models, such as

in the Community Coordinated Modeling Center (CCMC), and these will provide the most

comprehensive context for STEREO data.

3.1 Coronal Solar Wind Models

An approximate description of the global coronal magnetic field close to the Sun is given by

the so-called potential field source surface (PFSS) model, constrained by the lower bound-

ary condition of the photospheric magnetic field and an upper artificial boundary condition

at r ≈ 1.6–3.25 R�, where the magnetic field is assumed to be current-free (∇ × B = 0).

There exist a number or numerical codes based on such PFSS models, initially developed by

Altschuler and Newkirk (1969) and Schatten et al. (1969), later refined by Hoeksema (1984)

and Wang and Sheeley (1992), and recently used with input from Wilcox Solar Observatory

magnetograms (at CCMC), or from Michelson Doppler Imager (MDI) magnetograms on-

board the Solar and Heliospheric Observatory (SoHO) (Schrijver and DeRosa, 2003). These

codes are extremely useful to map out open magnetic field regions that connect not only from

coronal holes but also from some parts of active regions out into the heliosphere (Figure 3),

outlining escape paths for high-energetic particles.

The Magnetohydrodynamics Around a Sphere (MAS) model is developed by the Science
Applications International Corporation (SAIC) group, which is an MHD model of the solar

corona extending over a domain of 1–30 solar radii. The input of the model is (1) the radial
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Fig. 3 (Panel d) MDI magnetogram; (Panel e) MDI magnetogram overlayed with TRACE 171 Å; (Panel f)
TRACE 171 Å image of 2001-Mar-13, 00:13 UT; (Panel g) Potential field extrapolation using a source-surface
model. Closed field lines of active regions are indicated with black color, the open field lines that connect to
interplanetary space with white color (Schrijver and DeRosa, 2003)

magnetic field Br (ϑ, φ) as a function of co-latitude ϑ and longitude φ from a (full-Sun)

synoptic magnetogram (e.g., from Kitt Peak National Observatory, KPNO) that is slightly

smoothed, and (2) the temperature Te(ϑ, φ) and density ne(ϑ, φ) at the coronal base. The

model computes a stationary solution of the resistive MHD equations and provides as output

the plasma temperature Te(r, ϑ, φ), pressure p(r, ϑ, φ), density ne(r, ϑ, φ), solar wind velocity

v(r, ϑ, φ), and magnetic field B(r, ϑ, φ) as a function of the distance, in the range of 1 <

r < 30 R�. The initial condition employs a transonic solution for the gas-dynamic variables

with a polytropic index of γ = 1.05, which avoids the complications of the heating, thermal

conduction, and radiative loss terms in the energy equation. An example of such a 3D model is

shown in Figure 4. The MAS model has been used to simulate 3D coronal streamers (Linker

et al., 1990) and the solar corona during the whole-Sun month (Linker et al., 1999). Given

an (approximate) 3D model of the coronal density, stereoscopic images in white-light can be

integrated straightforwardly and compared with observed images from SECCHI/COR and

HI.
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Fig. 4 A 3D numerical computation of the solar corona with 101 × 75 × 64 (non-uniform) meshpoints
(r, ϑ, φ), (courtesy of SAIC group)

3.2 Heliospheric Solar Wind Models

Recent numerical codes that simulate or reconstruct the solar wind in the heliosphere (e.g.,

Schwenn and Marsch, 1991a,b; Neugebauer, 2001; Balogh et al., 2001) include MAS-IP
(Riley et al., 2001a,b), ENLIL (developed by D. Odstrc̆il), heliospheric tomography (devel-

oped by B. Jackson and P. Hick), and the exospheric solar wind model (developed by H. Lamy

and V. Pierrard), all part of the space weather modeling effort coordinated by CCMC. The

aim of these codes is to provide components for “end-to-end models” (e.g., CISM, UMich,

and CCMC) that link the coronal and solar wind physics and geometry – which is just what

the STEREO combined imaging and in-situ experiments are trying to do.

In the past we have had many separate coronal/imaging studies and on the other side in-situ

studies. But linking them demands combined data sets and coupled corona/solar-wind models

with realistic characteristics. For example, the magnetic field models tell us for a particular

photospheric boundary condition where open field regions (hence solar wind sources) should

be located, and which ones connect to specific points in space, e.g., to the STEREO spacecraft

or to the Earth (within the uncertainty of the chosen magnetic field model, of course). So we

may associate a particular coronal hole seen in an EUV image with a solar wind stream we

detect on the spacecraft or at Earth.
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Fig. 5 Model solution for Carrington rotations (CR) 1912–1913. The heliospheric current sheet (inferred
from the isosurface Br = 0) is displayed out to 5 AU. The central sphere marks the inner boundary at 30 R�.
A meridional slice of the radial velocity is shown at an arbitrary longitude. Red corresponds to fastest speeds
(≈750 km s−1) and blue to the slowest speeds (≈350 km s−1). Superimposed is a selection of interplanetary
magnetic field lines originating from different latitudes. Finally, the trajectories of the Wind and Ulysses
spacecraft are marked (Riley et al., 2001b)

The solar physics group at SAIC has developed a 3D MHD model of the solar corona and

heliosphere (Riley et al., 2001a,b). They split the modeling region into two distinct parts: the

solar corona (1–30 R�) and the inner heliosphere (30 R� − 5 AU). The combined model is

driven solely by the observed line-of-sight photospheric magnetic field and can thus provide

a realistic global picture of the corona and heliosphere for specific time periods of interest.

Figure 5 summarizes the global structure of the inner heliosphere for the interval coinciding

with Carrington rotation CR 1913 (1996 August 22–1996 September 18), which occurred

near solar minimum and overlapped the first “Whole Sun Month” campaign. Comparisons of

Ulysses and Wind observations with the simulation results for a variety of time periods (e.g.,

Riley et al., 2003a) show that the model can reproduce the overall features of observations.

In a subsequent study, the SAIC team employed this model to explore the evolution of the

heliospheric current sheet (HCS) during the course of the solar cycle (Riley et al., 2002a).

They compared their results with a simple “constant-speed” approach for mapping the HCS

outward into the solar wind, demonstrating that dynamic effects can substantially deform

the HCS in the inner heliosphere (�5 AU). They also noted that while the HCS may almost
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always be topologically equivalent to a “ballerina skirt”, more complicated shapes were

possible. One example was an interval approaching the maximum of solar cycle 23 (CR

1960 and 1961) when the shape would be better described as “conch shell”-like.

The NOAA/SEC heliospheric model (ENLIL) solves the time-dependent MHD equa-

tions in a spherical geometry using either the Flux-Corrected-Transport or Total-Variation-
Diminishing schemes (e.g., Odstrc̆il, 1994; Toth and Odstrc̆il, 1996, 2003; Odstrc̆il et al.,
2002). These high-resolution schemes produce second-order accuracy away from disconti-

nuities, while simultaneously providing the stability that ensures non-oscillatory solutions.

The inner radial boundary is located beyond the sonic point (≈21.5–30 R�), provided,

e.g., by the MAS or Wang-Sheeley-Arge (WSA) code. The outer radial boundary can be

adjusted to 1–10 AU, and the latitudinal extent covers ≈ ±60◦ north and south of the

ecliptic.

In support of the STEREO mission, the CCMC is running a series of solar and heliospheric

models (by coupling the MAS and ENLIL code) and is saving model input/output on a daily

basis. Driven by synoptic magnetogram data obtained by ground-based solar observatories,

the solar coronal potential field source surface (PFSS) model represents the approximate

coronal magnetic field within 2.5 R�. The ENLIL solar wind is driven by the WSA model

(Arge and Pizzo, 2000) which extends a PFSS magnetic field to 21.5 R� past the sonic point

(where the plasma velocity starts to exceed the sound speed) using a heliospheric current

sheet model and a slow and high speed solar wind distribution depending on the location of

coronal holes. ENLIL covers the radial distance between the WSA boundary of 21.5 R� and

1.6 AU in the inner heliosphere, between ±58◦ degrees heliographic latitude (which brackets

the streamer regions).

In both the PFSS and ENLIL models the time stamp of each file refers to the end time of

the solar rotation period covered by the magnetogram data. Typically this date lies about 2

days in the future, as magnetic fields on the solar disc can be measured fairly reliably up to

30 degrees of heliographic longitude away from the disk center (Carrington longitude of the

Earth).

The heliospheric tomography model makes use of interplanetary scintillation (IPS) data

to tomographically reconstruct the global structure of the solar wind, provided by earlier IPS

observations from STELab in Nagoya, Japan. The model ouptut yields solar wind density

and velocity throughout the inner heliosphere, and is able to make real-time heliospheric 3D

reconstructions (Jackson and Hick, 2002). For a review of solar wind properties from IPS

observations, see, e.g., Kojima et al. (2004). Since January 2003, the Solar Mass Ejection
Imager Mission (SMEI) has been providing data for the IPS Thomson scattering modeling

of the all-sky heliospheric solar wind and CMEs (Figure 6).

The 1-D exospheric solar wind model (Lamy et al., 2003), also part of the CCMC end-to-

end model chain, is developed for coronal holes over a radial range of ≈2–30 R�, including

protons and electrons, modeled with a nonmonotonic total potential for the protons, and with

a Lorentzian (kappa) velocity distribution function for the electrons. The exospheric kinetic

model assumes that there is a critical height where there is a transition from a collision-

dominated to a collisionless regime (at ≈1.1–5.0 R�, called the exobase). An overview of

the main differences between the exospheric and fluid/MHD approaches is given in Cranmer

(2002).

In addition to the CCMC effort, numeric codes to simulate the steady-state solar wind

with helmet-type streamer belt have been developed by the MHD modeling group at the

University of Michigan. An example of such a 3D MHD simulation is shown in Roussev

et al. (2003a), designed to reproduce the global structure of the solar corona and wind

under realistic conditions. The magnetic field in the model is split into a potential, B0,
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Fig. 6 Time-dependent tomographic reconstruction of the solar wind using SMEI data during the 2003 May
28 CME (courtesy of Bernie Jackson)

and a non-potential, B1, part: B = B0 + B1, where ∇ × B0 = 0. To obtain the bulk solar

magnetic field, B0 = −∇ψ , the PFSS method by Altschuler et al. (1977) is used. In this

method, the magnetic scalar potential, ψ , is evaluated as a series of spherical harmonics. The

coefficients in the series are chosen to fit real magnetogram data obtained from the Wilcox

Solar Observatory, and most recently from SoHO/MDI. The MHD solution in the model is

evolved from a static, potential initial configuration to a steady-state, non-potential solution

with a non-zero induced field, B1. The solar wind is powered (heated and accelerated) by the

energy interchange between the solar plasma and large-scale MHD turbulence, assuming that

the additional energy is stored in the “turbulent” internal degrees of freedom. Note that close

to the Sun, an additional amount of energy is stored in waves and turbulent fluctuations,

hence the specific heat ratio, γ , of the solar plasma is close to 1 (e.g., Steinolfson and

Hundhausen, 1988). The lower values of γ near the Sun are assumed to be associated with

those “turbulent” internal degrees of freedom. It is assumed that n = n0 + nturb(R), where

the number of “turbulent” degrees of freedom near the Sun is nturb(R�) ≈ 10, while at larger

distances it drops to zero, i.e., nturb(∞) ≈ 0, similar to the approach described in Zeldovich

and Raizer (2002) for partially ionized plasmas. Specifically, nturb(R) = 10 (R � /R)m , with

m = 1 is assumed in the original work by Roussev et al. (2003a). Thus the full energy equation

is employed in the computations, with a polytropic index γ (R) = [n(R) + 2]/n(R) that is

now a function of radius describing the additional energy density associated with turbulent

motions. This technique is an empirical one inspired by the “hidden internal” degrees of

freedom. The physical motivation is to bridge a polytrope, which is nearly isothermal, to a

fully fledged energy equation.

The 3D models of the corona and solar wind described above will help to link IMPACT

solar wind measurements to the Sun by allowing observations of specific electron populations,
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magnetic fields, and solar flare particle events to be mapped back to their source regions. The

seven instruments of IMPACT will sample the 3D distribution of solar wind plasma electrons

and the local vector magnetic field.

PLASTIC is a prime sensor on STEREO for studying coronal/solar-wind and solar-

wind/heliospheric processes. It measures the distributions of density, velocity, and kinetic

temperature (and its anisotropy), solar wind protons (H) and alphas (He), the elemental

composition, charge state distribution, kinetic temperature, and velocity of the more abun-

dant solar wind heavy ions (C, O, Ne, Mg, Si, Fe), as well as the distribution functions of

suprathermal ions (H through Fe). The PLASTIC measurements at two different heliospheric

positions will constrain better the relations between variations of the elemental composition

(including the FIP effect) in the solar wind and their coronal origin, by having two spatial

checkpoints at 1 AU for theoretical time-dependent 3D models of the heliospheric solar wind.

The hope is to understand the acceleration of the solar wind, for instance how the slow solar

wind originates near coronal streamer boundaries, or how the recurrent ion events originate

near corotating interaction regions (CIRs).

4 Modeling of Eruptive Filaments

4.1 MHD Models of Eruptive Filaments

The trigger of a flare or CME is often the (magnetic) destabilization and subsequent eruption

of a filament (called a prominence if seen over the solar limb), which is initially suspended

over a highly-sheared neutral line. The destabilization of the filament can be caused either by

the kink instability, during a process of increased twisting, or by some other equilibrium-loss

process. It can be initiated by continued shearing of the magnetic field, by increasing currents,

by converging motion of magnetic footpoints, by buoyancy with subsequent ballooning, or

through new magnetic flux emergence. The physical understanding of the origin of a CME

has now evolved from sketchy cartoons inspired by observations to full-scale numerical

3D MHD simulations constrained by observed magnetic fields; for recent reviews see, e.g.,

Forbes (2000), Klimchuk (2001), Zhang and Low (2005), and Roussev and Sokolov (2005).

Let us mention a few of the most recent 3D MHD simulations that seem to be most relevant

for modeling of STEREO data.

The eruption of a filament or a magnetic flux rope in a gravitationally confined helmet

streamer cavity (in the form of cool, dense prominence material) could be initiated after

draining of the prominence material. The buoyancy force causes the rise and eruption of

the flux rope, pushing aside the helmet streamer field lines (Low, 1996). A time-dependent

3D (ideal) MHD simulation of this CME eruption model was realized by Gibson and Low

(1998), and the 3D structure viewed from different (stereoscopic) aspect angles is discussed

in Gibson and Low (2000). Recent 3D MHD simulations of the Gibson-Low model of a

buoyantly emerging magnetic flux rope were performed by Manchester et al. (2004a). The

steady-state coronal field in the MHD model is generated from a prescribed dipole field that

progressively is opened up by the solar wind at high latitudes. Then a Gibson-Low type flux
rope is inserted inside a closed magnetic loop. To initiate the filament eruption, about 20% of

the balancing mass is removed from the flux rope, which produces an unbalanced pressure

that brings the flux rope out of equilibrium. Future models will incorporate self-consistent

arcade eruptions, based on the new insight that the magnetic field and shear velocity are not

independent (Manchester, 2003; Manchester et al., 2004b).
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Another line of CME initiation models is based on the analytical model of Titov and

Démoulin (1999), which contains a flux rope that is suspended in the corona by a balance

between magnetic compression and tension forces. In the 2D models, the flux rope with

current I has two possible equilibrium positions, provided that the current is not too large:

The lower position is stable, while the upper position is unstable. Above a critical current

there are no equilibria, and a small outward displacement leads to eruption of the flux rope.

In a modified version of the Titov and Démoulin (1999) model developed by Roussev,

Sokolov, and Forbes, the flux rope has a poloidal force-free field produced by a (toroidal)

ring current and a toroidal force-free field produced by azimuthal currents. An example of

such a 3D MHD simulation of an erupting flux rope is shown in Roussev et al. (2003b),

with the initial configuration illustrated in Figure 7. A special application of this CME model

is illustrated in Roussev et al., 2004 (Figure 8): The fully 3D numerical model of a solar

eruption incorporates solar magnetogram data and a loss-of-equilibrium mechanism. The

study was inspired by the CME event that took place on May 2, 1998, in NOAA AR 8210

and is one of the SHINE Campaign Events. The CME model has demonstrated that a CME-

driven shock wave can develop close to the Sun (∼3R �), and is sufficiently strong to account

for the prompt appearance of high-energy solar protons (∼1 GeV) at the Earth. Using this

CME model, Sokolov et al. (2004) have carried out a numerical investigation in which they

quantified the diffusive acceleration and transport of solar protons at the shock wave from

the MHD calculations. The coupled CME-SEP simulation has demonstrated that the theory

of diffusive shock acceleration alone can account for the production of GeV protons during

solar eruptions.

A further line of CME initiation models focuses on the kink instability of a twisted

flux rope. The force-free coronal loop model by Titov and Démoulin (1999) is found to be

Fig. 7 Initial configuration of the 3D magnetic field of a flux rope prone to loss of equilibrium and subsequent
eruption. The solid lines are magnetic field lines, where the false-color code visualizes the magnetic field
strength in units of Testa. The surface shaded in gray is an isosurface at Bz = 0 (Roussev et al., 2003b)
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Fig. 8 Three-dimensional view of the modeled CME from May 2, 1998, at 1.1 h after the initiation (from
Roussev et al., 2004). The solid lines are magnetic field lines and the false color shows the magnitude of the
current density in units of μA m−2 (see color legend at top right). The magnitude of flow velocity, in units of
km s−1, is shown on a translucent plane (see color legend to the left). Values in excess of 1,000 km s−1 are
blanked and shown in light grey. The grid-structure on this plane is also shown as the black frame. The inner
sphere corresponds to R = R�. The color shows the distribution of radial magnetic field in units of Gauss
(see color legend at bottom right). Regions with field strength greater than 3 G are blanked and appear in grey
(Roussev et al., 2004)

unstable with respect to the ideal kink mode, which suggests this instability as a mechanism

for the initiation of flares, once the average twist of � � 3.5π is exceeded (Török and

Kliem, 2003; Török et al., 2003; Kliem et al., 2004; Rust and LaBonte, 2005). A particularly

fitting simulation of a kinking filament that becomes unstable is shown in Figure 9, where

a close ressemblance with EUV images from TRACE 195 Å is demonstrated (Török and

Kliem, 2004). The magnetic field decrease with height above the filament is critical whether

a confined eruption or a full (unconfined) eruption occurs. Because this model predicts a

fairly accurate evolution of the 3D geometry of the kinking filament, a time-dependent 3D

reconstruction with two STEREO spacecraft using EUVI images promises very stringent

tests of this theoretical model.

More complex CME initiation models involve multiple magnetic flux systems, such as in

the magnetic break-out model (Antiochos et al., 1999). In this model, reconnection removes

unstressed magnetic flux that overlies the highly stressed core field and this way allows

the core field to erupt. The magnetic break-out model involves specific 3D nullpoints and

separatrices. A multi-polar configuration was also included in the updated catastrophe model
(Lin and Forbes, 2000; Lin and van Ballegooijen, 2005), which contrasts the magnetic break-
out model. Such more complex magnetic configurations are difficult to disentangle, but two

independent views with the STEREO/EUVI imagers provide a more promising capability to

test the 3D magnetic field configuration than previous single-spacecraft observations.
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Fig. 9 Top: TRACE 195 Å images of the confined filament eruption on 2002 May 27. The right image shows
the filament after it has reached its maximum height. Bottom: magnetic field lines outlining the kink-unstable
flux rope reproduced with 3D MHD simulations (Török and Kliem, 2004)

4.2 Modeling of EUV and White-Light Emission

While most theoretical models of eruptive filaments are formulated in terms of the 3D

magnetic field, quantitative tests with observations require the magnetic field lines to be

filled with plasma, so that emission measures and line-of-sight integrated images can be

simulated and compared with observed images, e.g., in white-light for SECCHI/COR and

HI, or in EUV for SECCHI/EUVI.

Previous comparisons of theoretical models with observed images of eruptive filaments

showed evidence for the helical geometry of magnetic flux ropes (Rust and Kumar, 1996;

Chen et al., 1997, 2000; Dere et al., 1999; Wood et al., 1999; Ciaravella et al., 2000; Gary

and Moore, 2004, Figure 10 here), evident in EUV images in the lower corona as well as in

white-light images in the outer corona. There is a strong connection between the magnetic

structure of interplanetary magnetic flux ropes (or magnetic clouds) and that of the associated

coronal fields at the site of erupting filaments/prominences (Bothmer and Schwenn, 1998;

Bothmer, 2003; Cremades and Bothmer, 2004). Some synthetic white-light images have been

simulated for a flux rope model by Chen et al. (2000), but an unambiguous test of the 3D

geometry requires at least two views with different aspect angles, as SECCHI/COR and HI

will provide.

The eruption of a filament or launch of a CME can also be tracked at the base of the solar

corona: (1) where a dimming occurs in EUV (Hudson et al., 1998) due to a temporary deficit

of evacuated coronal plasma, (2) by detecting the formation of post-eruption arcades in EUV

and white-light (Tripathi et al., 2004), or (3) in the form of EIT waves. (Thompson et al.,
1999), which concentrically propagate over the entire solar surface, caused by the “pressure
implosion” at the epicenter of the erupted filament. The propagation of EIT waves has been

theoretically simulated in terms of fast-mode MHD waves (Wang, 2000; Chen et al., 2002;

Wu et al., 2001), which helped to reconcile the observed speed of propagating EIT waves with
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Fig. 10 Left: TRACE 1600 Å images in CIV of the GOES-class X3 flare on 2002-Jul-15, 20:04 UT. The
inserts illustrate the geometry of the helical structure, exhibiting 3–4 turns. Note that the helical structure
expands, rises, and unwinds during the eruption (Gary and Moore, 2004); Right: Geometrical models of
helical fluxtubes with different twists (0.1, 0.5, 3.0 turns), projected onto straight and curved cylinders

the theoretically expected speeds of (fast-mode MHD) magnetoacoustic waves (Figure 11).

STEREO/EUVI images enable us to determine the average local density ne(x) and temper-

ature Te(x) (in the range of Te ≈ 0.7– 2.7 MK) of the coronal plasma, while photospheric

magnetograms provide input for extrapolation of the coronal magnetic field B(x), and this

way the local Alfvén speed vA(x) and sound speed cS(x) can approximately be computed for

every location x in the global corona. This allows us then to predict the (fast-mode MHD)

magnetoacoustic wave speed, which in turn can be compared with the observed propagation

speed of EIT waves. The SECCHI images will therefore provide powerful constraints for the

3D propagation of global waves in the corona.

The data search, the objectivity of morphological characterization, and the modeling ef-

ficiency can considerably be enhanced by automated detection algorithms, as it has already

been faciliated by automated filament detection (Ipson et al., 2005; Zharkova and Schetinin,

2005), by automated detection of EIT waves and dimming (Podladchikova and Berghmans,

2005), by automated CME detection (Robbrecht and Berghmans, 2004), and by automated

detection and 3D reconstruction of EUV prominences (Foullon, 2003). In summary, power-

ful tools for automated feature detection, theoretical 3D models of erupting filaments, and

simulations of the corresponding EUV and white-light images have been developed over the

last decade, but the feedback algorithms that vary the free parameters in theoretical models

and control the forward-fitting to observed images (as we expect from STEREO) are still

lacking.

5 Modeling Coronal Mass Ejections

5.1 MHD Simulations of CMEs

Some key questions of the STEREO mission address the 3D structure and evolution of

CMEs from the solar corona to interplanetary space, in particular the physical understanding
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Fig. 11 Left: Two running-difference SoHO/EIT 195 Å images of an EIT wave observed 16 and 30 min after
launch of the CME on 1997-May-12, 04:34 UT. Right: Simulation of an EIT wave by a ray-tracing method
of fast-mode MHD waves. The color range indicates wave speeds v > 500 km s−1 (black) and lower speeds
(white). The four simulated images correspond to 2, 15 min (middle column), and 30, 45 min (right column)
after launch of the CME (Wang, 2000)

of the forces involved in various acceleration and deceleration phases of propagating CMEs.

These questions can only be answered by 3D MHD simulations of CMEs constrained by

3D observations such as those from STEREO. Powerful numerical 3D MHD codes have

now become available that are capable of performing the required simulations, such as the

coupled MAS/ENLIL code used by the SAIC and NOAA Team (see also Section 3.1), or the

BATS-R-US code used by a University of Michigan Team.

As with the ambient solar wind model described in Sections 3.1 and 3.2, SAIC and

NOAA/SEC have coupled their models to study the eruption and evolution of CMEs through

the corona and into the solar wind. The details of the algorithm used to advance the equations

of the SAIC coronal models (MAS) are given elsewhere (Mikić and Linker, 1994; Lionello

et al., 1998; Mikić et al., 1999). Briefly, the equations are solved on a spherical (r, ϑ, ϕ) grid,

which permits non-uniform spacing of mesh points in both r and ϑ , thus providing better reso-

lution of narrow structures, such as current sheets. Staggered meshes are employed, which has

the effect of preserving ∇ · B = 0 to within round-off errors for the duration of the simulation.

Figure 12 illustrates how CME initiation can be modeled self-consistently. The configura-

tion of the solar corona prior to the emergence of the flux rope is summarized in the two left

most panels. This type of equilibrium solution has been discussed in more detail by Linker

et al. (1999). Contours of the magnetic flux function (fiduciaries of magnetic field lines in two

dimensions) are shown by the solid lines and shaded contours (Figure 12, top). The system

consists of a single streamer belt displaced by ≈10◦ below the heliographic equator. The first

column shows the state of the corona after the system has reached equilibrium. The second

column shows how this configuration is modified by energization of the magnetic field via

photospheric shear (Linker and Mikić, 1995). At this point, the system is still in equilibrium.
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Fig. 12 Evolution of a sheared helmet streamer via flux cancellation. The top panels show contours of the
magnetic flux function, which in two dimensions are equivalent to the magnetic field. The bottom panels show
the simulated polarized brightness. The four columns summarize: (1) the state of the unsheared corona; (2)
the sheared corona; (3) the eruption of the flux rope after 10 h; and (4) the eruption of the flux rope after 20 h,
respectively (Riley et al., 2003b)

The polarized brightness (pB) is shown in the Figure 12 bottom panels, constructed by inte-

grating the product of the number density with the scattering function (Billings, 1966) along

the line-of-sight (see Section 5.3). The resulting image bears some generic resemblance to

SoHO/LASCO white-light images taken near solar minimum (although the model does not

reproduce details such as the often observed twisted field lines and bright pre-CME central

cores seen in white light images). The remaining panels of Figure 12 summarize the lauch

of a flux rope following the cancellation of flux. As can be seen, the origins of the flux rope

lie in the closed magnetic field lines embedded within the streamer belt. As the flux rope

erupts into the solar corona, overlying field lines, which are still connected back to the Sun

at both ends, are brought together under the flux rope. As they reconnect with each other,

they contribute both to the flux of the evolving flux rope to the right of the reconnection site

and to the re-growth of the streamer belt to the left. Note that the flux rope has developed

an elliptical shape, with its major axis approximately in the ecliptic plane. Note also that the

reconnection site underneath the erupting flux rope is visible in the simulated pB image at

t = 20 h. This density enhancement was produced by the vertical (i.e., approximately parallel

to the solar surface) flow of plasma into the reconnection region and has been observed in

white light images (Webb et al., 2003). With regard to the simulated polarized brightness

images, we also remark that they bear a strong resemblance to the classic three-part structure

of CMEs observed in white light: the bright front, dark cavity, and dense core.

The BATS-R-US solves a set of (ideal) MHD equations using the Block Adaptive Tree
Solar Wind Roe-type Upwind Scheme (BATS-R-US) code (Powell et al., 1999; Groth et al.,
2000), in combination with the Artificial Wind approximate Riemann (AWR) solver (Sokolov

et al., 2002). This is a conservative finite-volume method with shock-capturing total varia-

tion diminishing schemes, explicit/implicit time stepping, a block-adaptive mesh refinement

scheme, that runs on massively parallel computers. The energy equation is simplified to the

kinetic and gravitational terms (neglecting radiative losses, heat conduction, background heat-

ing, and dissipative effects due to viscosity and electric resistivity). A series of BATS-R-US
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Fig. 13 Top left: Line-of-sight image of a CME simulated with the BATS-R-US code, 10 h after its launch,
as seen from a coronagraph looking at the limb CME with a field of view of 64 R� centered at the Sun. The
black disk, corresponding to 2 R�, shows the occulting disk of the coronagraph. Top right: Two isosurfaces
showing the density increase by 30% (red) and a density decrease of 20% (blue) over the pre-event density
structure, 10 h after launch of the CME. The yellow sphere is positioned at the Sun and has a radius of 10 R�.
Bottom left: Line-of-sight image of the CME, 49.6 h after launch, with a field-of-view of 200 R�. Bottom
right: Similar representation as top right, at 49.6 h after launch (Lugaz et al., 2005)

runs simulate the launch of a CME by loss of equilibrium of a flux rope anchored on the solar

surface (Roussev et al., 2003b), shock formation at a distance of 5 R� (Roussev et al., 2004),

and the evolution of the CME density structure during propagation out to 100 R�, with sim-

ulations of stereoscopic views in white-light (Figure 13) as it will be seen by STEREO/HI-2

(Lugaz et al., 2005).

The ENLIL code, described in the foregoing section on the solar wind (Section 3.2), is a

heliospheric code developed by the NOAA Team (Odstrc̆il et al., 2002) and covers the range

from 30 R� to 1–5 AU, using input at the lower boundary from the MAS model that extends

from 1 to 30 R�. The heliospheric code is somewhat simpler than the coronal code (which

requires to solve the resistive MHD equations), because the ambient solar wind is everywhere

super-critical and the ideal MHD equations can be used. This heliospheric code (Odstrc̆il

et al., 1996; Toth 1996; Odstrc̆il and Pizzo, 1999a,b) solves the ideal MHD equations with

an explicit finite-difference scheme, uses an adiabatic constant of γ = 5/3 to describe the
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Fig. 14 Evolution of a flux rope through the inner heliosphere. The panels extend ±60◦ in latitude and from
left to right, extend in heliospheric distance from the Sun to 0.6 AU, 1.2 AU, and 5 AU. The contours denote:
radial velocity (color); density (red lines); and magnetic field (black lines) (Riley et al., 2003b)

fully-ionized solar wind plasma, and produces accurate shock strengths. This code simulates

the distortion of the interplanetary magnetic field by the 3D propagation of a CME in a

structured solar wind (Odstrc̆il and Pizzo 1999a), the 3D propagation of a CME launched

within (Odstrc̆il and Pizzo, 1999b) and adjacent to a streamer belt (Odstrc̆il and Pizzo, 1999c)

out to 5 AU. These runs have shown that the disentangling of merged CME and CIR shocks

require multi-spacecraft observations such as STEREO will provide. Simulations of the 12

May 1997 interplanetary coronal mass ejection (ICME) event have enabled us to predict

the arrival of the shock and ejecta at Earth (Odstrc̆il et al., 2004a). Stereoscopic white-light

images simulated from these 3D MHD outputs are expected to allow for discrimination

between different event scenarios (Odstrc̆il et al., 2005).

The most comprehensive end-to-end approach of modeling CMEs has been started at the

Center for Integrated Space Weather Modeling (CISM), led by Boston University (Principal

Investigator: W. J. Hughes). The goal is to simulate the full Sun-to-Earth system by coupling

state-of-the-art codes (Luhmann et al., 2004), modeling the solar corona (MAS code), the

solar wind (ENLIL code), the magnetosphere, and the upper atmosphere/ionosphere. The

propagation of a CME in a coupled coronal (MAS) and heliospheric (ENLIL) MHD code is

decribed in Odstrc̆il et al. (2004b).

Figure 14 summarizes the evolution of a flux rope and its associated disturbances between

the Sun and 5 AU at 3 times. The displayed speeds have been restricted to 390–490 km s−1 to

emphasize flows associated with the disturbance. Note how the ejecta become progressively

more distorted with increasing heliocentric distance. By ≈5 AU it has been squeezed so much

at low latitudes that it has evolved into two lobes, connected by a thin band of compressed
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field. Surprisingly, much of this distortion can be described by kinematic effects (Riley

and Crooker, 2004). More importantly, even under such idealized conditions, the flux rope

develops considerable structure, suggesting that interpreting and de-convolving STEREO

observations of the same ICME will be a challenge. We also note the presence of outflow

associated with post-eruption reconnection underneath the flux rope, which has remained

intact within the expansion wave (rarefaction region) behind the flux rope; It has a limited

latitudinal extent (±15◦) and trails the ejecta by ≈35 R� at 1 AU (middle panel). This aspect

of the simulation is discussed in more detail by Riley et al. (2002b).

A comparison of different techniques that fit the magnetic structure of an ICME to force-

free and non-force free flux ropes was performed by Riley et al. (2004). Such end-to-end

models of the Sun-to-Earth system are of course extremely important to provide a self-

consistent context for modeling the STEREO multipoint images and multipoint in-situ SEP

measurements.

5.2 Modeling the EUV Emission of CMEs

The field of view of the SECCHI/EUVI imager extends to about 1.7 R�, so EUV emission

of CMEs can only be imaged in the corona during the first few minutes after their launch,

while the propagation further out can be tracked in white light with SECCHI/COR (COR1:

1.1–3.0 R�; COR2: 2–15 R�) and SECCHI/HI (12–318 R�). The 3D reconstruction of

CMEs in EUV can be approached in two different ways: either with forward-fitting using

a parameterized 3D density model ne(x, y, z, t, Te) as a function of space (x, y, z), time t ,
and electron temperature (Te), or by “tomographic” inversion (e.g., using a back-projection

method). The first method can be very computing-intensive if there is a large number of free

parameters involved, while the second method suffers from extreme undersampling in the

case of two spacecraft only (though an additional third view might be available from the

SoHO/EIT telescope).

Although no efficient method has been published yet for the 3D reconstruction of CMEs

from stereoscopic EUV images, we expect that some iterative forward-fitting method will be

developed in near future that has a feedback between the goodness of the fit and the variation

of the free model parameters. Once a geometric density model is specified for a given time

t, i.e., ne(x, y, z, Te), the EUV intensity for an optically thin spectral line of wavelength λi j

(for transition from atomic energy level ε j to a lower level εi ) for a given line-of-sight in

direction z is then

I (λi j ) = AX

∫
C(Te, λi j , ne)nenH dz, (1)

where AX = N (X )/N (H ) is the abundance factor of element X to hydrogen H, ne the

electron density, nH the hydrogen density, and C(Te, λi j , ne) is the contribution function,

C(Te, λi j , ne) = hνi j

4π

A ji

ne

N j (X+m)

N (X+m)

N (X+m)

N (X )
(erg cm−2s−1ster−1), (2)

with N j (X+m) the population number of the ionization state +m. Since the corona is fully

ionized, we can use the so-called coronal approximation by setting the hydrogen density

equal to the electron density, nH ≈ ne (neglecting the helium electrons), which demonstrates

that the (optically thin) EUV emission is essentially proportional to the squared electron

density, I α n2
e , for a given electron temperature. [The electron temperature Te determines the
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ionization equilibrium, collision rates, and EUV contribution function.] For the calculation of

the contribution function C(Te, λi j , ne), there are now codes available in the solar community,

e.g., the CHIANTI code (Dere et al., 1997, 2001; Young et al., 1998; Landi et al., 1999; see

also URL site in Table 2). The total density function at any point in a CME can then be obtained

(at time t) by integrating over all temperatures, ne(x, y, z, t) = ∫ ne(x, y, z, t, Te)dT . We

need to derive an approximate (timedependent) density model ne(x, y, z, t) from modeling

the stereoscopic EUV images, either by forward-fitting or by inversion, in order to faciliate

quantitative comparisons and tests of dynamic CME models simulated with 3D MHD codes

(Section 5.1).

5.3 Modeling the White-Light Emission of CMEs

The SECCHI/COR1, COR2, and HI instruments will track CMEs in white light over a range

from 1.1 R� to 328 R� (≈1.5 AU), so they are the primary imagers for 3D reconstruction

of propagating CMEs. 3D reconstruction and visualization of CMEs in white light is mostly

led by the Naval Research Laboratory (NRL) and Max Planck Institut für Sonnenforschung
(MPS) Teams. The goal is to reconstruct the 3D density distribution ne(x, y, z, t) in the so-

lar K-corona, such as polar plumes, equatorial streamers, CMEs, and the coronal volume

inbetween. Information is available in total brightness (B) images as well as in polarized
brightness (pB) images. Standard tomographic methods are not suitable for only two pro-

jections. Maximum entropy and pixon methods (Puetter, 1995, 1996, 1997; Puetter and

Yahil, 1999) are considered as more viable, currently investigated by the NRL Team. Current

tests with a pixon code require relatively long computing times, but demonstrate successful

reconstructions of simple CME geometries (e.g., cones or semi-shells).

In order to reconstruct the electron density from the image of the K-corona captured by

the spacecraft, we have to integrate the Thomson-scattered light from all directions that are

incident on the spacecraft. The scattered radiation can be separated into tangentially and

radially polarized light (Billings, 1966), where the tangential emission coefficient It may be

written as

It (r) = π I0σ

2
ne(r)�A (photons s−1), (3)

and the radial emission coefficient Ir may be written as

Ir (r) = π I0σ

2
ne(r)[�B cos2(χs) + �C ] (photons s−1). (4)

I0 is the solar intensity at disk center, R is the solar radius, r is the distance of the scattering

point from Sun center, σ is the Thomson scattering cross section, χs is the scattering angle,

and �A, �B , and �C , are functions of r/R which account for the non-zero radius of a limb-

darkened Sun (Billings, 1966; Minnaert, 1930; Milne, 1921; Neckel and Labs, 1994). The

polarized (pB) and unpolarized brightness B are given by

pB = It − Ir (5)

and

B = 2Ir (6)
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Recent applications of the proper treatment of Thomson-scattered emission of CMEs ob-

served over a large range of elongations angles are given in Vourlidas and Howard (2006).

Note that there are two important differences to EUV imaging: (1) white light emission is

proportional to the total density, while EUV emission is proportional to the squared density,

and (2) white light sees the total density summed over all temperatures, while EUV images

see only the density in the temperature range of a particular filter. Simulations of white-light

images from model 3D density distributions are visualized in Lugaz et al. (2005) and in

Pizzo and Biesecker (2004). The latter study demonstrates a robust triangulation method to

obtain the centroid location, approximate shape, and velocity of CMEs, using a sequence

of stereoscopic white-light images. Some new insight about the 3D configuration of CME

shapes is also obtained from a recent data analysis study by Cremades and Bothmer (2004),

which shows that CMEs arise in a self-similar manner from pre-existing smallscale loop

systems, overlying regions of opposite magnetic polarities, which can be exploited to predict

some geometric properties based on the relative orientation of the underlying neutral line in

each hemisphere.

Based on the density determination of CMEs from white-light images, the total mass

and velocity of a CME can be quantified during propagation, which allows to study the

energetic balance between potential, kinetic, and magnetic energy, whose sum is found to

be approximately conserved based on LASCO data (Vourlidas et al., 2000). However, the

thermal energy generated by cumulative heating during its evolution can add a comparable

amount to the energy budget of CMEs (Akmal et al., 2001).

A complementary method of 3D reconstruction of CMEs in white light is the method

of 3D polarimetric imaging (Moran and Davila, 2004; Dere et al., 2005). The underlying

assumption in this method is that the polarized brightness increases for Thomson scattering

with Ip ∝ sin2 χ , while the unpolarized brightness decreases with increasing sin2 χ . This

information can be used to distribute the mass ne(x, y, z) along each line-of-sight z in such

a way that it matches both the polarized brightness pB(x, y) and unpolarized brightness

B(x, y). Although this method can be used for a single white light imager (e.g., as demon-

strated for SoHO/LASCO), it promises an even better constrained 3D reconstruction for two

stereoscopic spacecraft, and thus will provide a very useful test for alternative reconstruction

methods (such as pixon).

Further out in the heliosphere, the 3D density distribution of CMEs can be reconstructed

tomographically either from polarized brightness data or from interplanetary scintillation

(IPS) data (Jackson and Froehling, 1995; Jackson and Hick, 2002, 2004), as mentioned in

Section 3.2 (Figure 6).

5.4 Modeling Radio Emission of CMEs

Although there is no radio imaging capability onboard the STEREO spacecraft, we emphasize

that ground-based radio imaging can provide a very useful complement for 3D reconstructions

of CMEs. In the CME event of 1998-Apr-20 it was demonstrated for the first time that

an expanding CME can be imaged directly at (metric) radio wavelengths, based on the

nonthermal synchrotron emission from electrons with energies of ≈0.5–5 MeV (Bastian

et al., 2001). CMEs might even be imaged in radio wavelengths based on their thermal

free-free emission (Gopalswamy and Kundu, 1993; Bastian and Gary, 1997), which would

help to constrain their 3D density and temperature distribution. Joint radio imaging (with the

Nançay radioheliograph) and SoHO/LASCO observations of a CME indicate also successive

magnetic reconnection events at the CME leading edge that are responsible for multiple

injections of electrons into interplanetary space (Pick et al., 1998).
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Fig. 15 Numerical MHD simulations of a CME shock wave moving through the ambient solar wind. The
CME is injected in the center of the heliospheric current sheet streamer belt (left), which is tilted to the solar
axis. The propagating CME is shown at slices in heliographic longitudes and at a distance of 2.5–5 AU from
the Sun 12 days after launch. The slices are 4 different heliographic latitudes and show how the CME’s shape,
pressure and speed vary depending on the ambient solar wind conditions (Courtesy of Victor Pizzo)

6 Modeling Interplanetary Shocks

6.1 MHD Modeling of Interplanetary Shocks

CMEs have typical propagation speeds of v ≈ 300–400 km s−1, but fast CMEs have been

measured in excess of v = 2000 km s−1. The fast solar wind has a typical speed of v ≈
800 km s−1. The fast-mode speed dictates whether a fast-mode shock will form, leading to

CME driven transient interplanetary shocks. Numerical simulations with HD or MHD codes

(e.g., Figure 15), have been able to reproduce the observed speeds and pressure profiles of

shocks and CME events out to large distances from the Sun. In such simulations, a pressure

pulse is initiated in the lower corona. As the front of a fast CME overtakes the slower solar

wind, a strong gradient develops and pressure waves steepen into a forward shock propagating

into the ambient wind ahead, and occasionally a reverse shock propagates back through the

CME towards the Sun. Numerical simulations of CMEs propagating from the corona (Mikić

and Linker, 1994; Linker and Mikić, 1995; Linker et al., 2001) through the heliosphere can

be found in Odstrc̆il et al. (1996, 2002), Odstrc̆il and Pizzo (1999a, b, c), and Odstrc̆il et al.
(2005). The shock strength as well as the stand-off distance between the shock front and the

CME driver gas can vary considerably across the structure, depending where compression

or rarefaction occurs between the slow solar wind in the streamer belt and the fast solar wind
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in coronal holes (Odstrc̆il and Pizzo, 1999b,c). The predicted arrival time of CME shocks at

1 AU depends critically on the modeling of the background solar wind, which controls the

shock propagation speed (Odstrc̆il et al., 2005).

There are a number of complications that can occur, such as the fact that a faster CME

can catch up with a slower CME and interact (Gopalswamy et al., 2001). Such interactions

form compound streams in the inner heliosphere.

These systems continually evolve further and merge with other CMEs and shocks as they

move outward. In the outer heliosphere, beyond 5 AU, such structures form Global Merged
Interaction Regions (GMIRs), which become so extensive that they encircle the Sun like a

distant belt. Such regions block and modulate galactic cosmic rays (i.e., the flux of high-energy

particles that continuously streams into the heliosphere). Finally, a forward interplanetary

shock wave that passes the Earth’s magnetosphere may cause a sudden commencement of a

magnetic storm or substorm at the Earth and change the electrical and magnetic connection

of the interplanetary magnetic field with the Earth’s magnetic field.

6.2 Detection of Interplanetary Shocks by STEREO

The kinematic 3D reconstruction of a CME leading edge with SECCHI/COR and HI will

provide the true 3D velocity v(r) of the propagating CME front, while previous measurements

with a single spacecraft (e.g., with SoHO/LASCO) yielded only the velocity component

projected in the plane-of-sky, and thus only a lower limit. A large number of CMEs will

therefore reveal a higher propagation speed than previously reported values, which may also

give a systematic correction from subsonic to supersonic propagation speeds. Triangulation

measurements with SECCHI will therefore be an important diagnostic of the true Mach

number of interplanetary shocks.

The double-spacecraft configuration of STEREO will also provide situations where a

CME shock passes one spacecraft, while the other can observe the CME shock from the side.

This provides a unique opportunity to relate the in-situ measurements of shock-accelerated

or shock-trapped particles at one spacecraft to the density and velocity diagnostic from the

other spacecraft. Specific modeling of such situations has not been published so far, but we

anticipate that such data analysis will provide insights into shock acceleration, the primary

shock structure, its interactions with corotating streams, interaction regions (CIRs), secondary

interplanetary shocks, and transient (solar wind) flows. Detection of radio waves from shock-

associated particle beams and energetic particles (SEPs) will be discussed in more detail in

the next two Sections (Sections 7, 8).

7 Modeling of Interplanetary Particle Beams and Radio Emission

7.1 Modeling for STEREO/WAVES

Interplanetary radio bursts provide a rich diagnostic on the acceleration and propagation

of energetic particles and shock waves (Figure 16). Radio bursts with plasma frequencies

�20 MHz (above the Earth’s ionospheric cutoff frequency) can be observed with ground-

based radio telescopes. These radio bursts extend only out to about 1–2 solar radii, while

all interplanetary radio bursts further out have lower plasma frequencies and require space-

based radio detectors such as STEREO/SWAVES. Previous stereoscopic radio experiments

(STEREO-1) with a single spacecraft and a ground-based instrument were able to map out

the directivity pattern of type III bursts (Caroubalos and Steinberg, 1974; Caroubalos et al.,
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Fig. 16 Overview of physical processes and corresponding radio signatures produced by a flare/CME event.
The radio dynamic spectrum is observed by the WIND spacecraft for the 1998 Aug 24–27 geoeffective event
(SWAVES website)

1974; Reiner and Stone, 1986, 1988, 1989), while a combination of three spacecraft was able

to resolve the 3D trajectory of type III bursts and to demonstrate harmonic emission (Gurnett

et al., 1978; Reiner et al., 1998b; Dulk et al., 1985).

The STEREO/WAVES (SWAVES) instruments will have two vantage points in space, and

can also be combined with a third viewpoint from ground (at least for frequencies �20 MHz).

SWAVES will be able to triangulate type II and type III radio emission and can observe them

remotely as well as in situ together with associated plasma waves, while IMPACT and

PLASTIC instruments can detect radio-associated nonthermal particles in situ. The two-

point wave measurements by the two identical SWAVES instruments (combined with the

particle detections by IMPACT and PLASTIC) can map out the acceleration efficiency and

conversion efficiency into radio waves at two geometrically different parts of a shock, for

instance in parallel shock regions (at the CME front) and in perpendicular shock regions (in

the flanks of a CME), for large stereoscopic separation angles later in the mission. Previous

measurements showed that type II emission upstream of a strong CME-driven interplanetary

shock is strongest in quasi-perpendicular shock regions (Bale et al., 1999). The triangulation

of the strongest radio type II source as a function of time will track the location of the most

efficient particle acceleration and conversion into radio emission within a propagating shock

front. The triangulation of multiple radio sources will reveal the detailed shock structure

(e.g., foreshock regions). Furthermore, since SWAVES can triangulate the absolute position

of plasma emission sources, the plasma frequency and related electron density ne(r) can be

determined directly without using heliospheric density models. The triangulated radio source

will also yield the direct radial speed v(r) of the CME-driven shock from the Sun to 1 AU,

providing real-time predictions of the shock arrival at Earth.
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7.2 Particle Beams and Radio Type III Emission

Particle beams, i.e., nonthermal particles with an anisotropic velocity distribution concen-

trated in a direction parallel to the magnetic field, reveal flare-associated or CME-associated

acceleration processes. Flares can produce interplanetary particle beams if the coronal mag-

netic reconnection site is connected with interplanetary space via open magnetic field lines.

Alternatively, interplanetary particle beams might be generated in situ in interplanetary super-

Alfvénic CME shock waves. So, the localization and tracking of these dual sources of inter-

planetary particle beams will be a fitting task for the STEREO mission.

Since the plasma in interplanetary space is nearly collisionless, suprathermal and high-

energy particles can propagate through interplanetary space and form particle beams (e.g.,

electron beams or ion beams). The velocity dispersion causes the higher energy electrons to

stream ahead of the lower energy electrons, creating a transient bump-in-tail instability. The

free (kinetic) beam energy is converted into Langmuir waves via the Landau resonance, and

some Langmuir wave energy is converted into radio waves at the fundamental or harmonic lo-

cal plasma frequency (e.g., McLean and Labrum 1985). Thus, beam-driven type III-like radio

bursts are common in interplanetary space. The spatial size of interplanetary radio bursts can

be very large, since the extent of the radio source grows with distance from the Sun. A quan-

titative model of interplanetary type III emission, which incorporates large-angle scattering

and reabsorption of fundamental emission amid ambient density fluctuations, called stochas-
tic growth theory, accounts for anomalous harmonic ratios, the exponential decay constant

of bursts, burst rise times, arid the directivity of type III emission (Robinson and Cairns,

1998a,b,c), which is suitable for comparisons with SWAVES and IMPACTmeasurements.

7.3 Shock Waves and Radio Type II Emission

Classic radio diagnostics of propagating shock fronts are type II bursts, which are charac-

teristic of plasma emission at the fundamental and harmonic plasma frequency generated in

coronal and interplanetary shocks, appearing as slowly-drifting pair bands in radio dynamic

spectra. Type II bursts are interpreted in terms of shock waves, either CME-driven or blast

waves, that accelerate electrons and produce radio emission near the electron plasma fre-

quency f pe and near 2 f pe in the upstream region (Wild et al., 1963; Nelson and Melrose,

1985; Bale et al., 1999; Cairns and Kaiser, 2002; Warmuth and Mann, 2005). However, there

is no one-to-one correspondence between the existence of shocks and type II bursts. Slowly-

drifting type II bursts mark the passage of a shock, but not all shocks produce radio bursts.

Furthermore, type II bursts do not outline the entire shock front, but occur only where a shock

wave intersects preexisting structures (Stewart, 1984; Reiner and Kaiser, 1999). However,

interplanetary type II bursts were all found to be associated with fast CMEs, with shock

transit speeds �500 km s−1 (Cane et al., 1987).

Dynamic spectra of both coronal and interplanetary type II bursts routinely show multiple

emission bands that appear and disappear, have different frequencies and frequency drift

rates, and time varying intensities (e.g., Reiner et al., 1998a; Cane and Erickson, 2005).

One goal of the two STEREO/SWAVES instruments is to remotely track type II bursts and

interpret the varying frequency fine structures in terms of emission from spatially distinct

regions of the shock as they move through the inhomogeneous solar wind. This inversion

requires detailed theoretical modelling of type II emission. Recent MHD simulations of CME

shocks show also that a single flare/CME event can generate coronal disturbances observed

as two separate type II radio bursts (Odstrc̆il and Karlický, 2000).
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Fig. 17 Dynamic spectrum of a modeled type II burst. The two solid curves are the fundamental and harmonic
frequency drift rate of the shock’s leading edge. The structures responsible for various spectral features are
indicated (Knock and Cairns, 2005)

A semi-quantitative theory exists for type II bursts (Knock et al., 2001, 2003a,b; Knock and

Cairns, 2005), which combines (i) “magnetic mirror” reflection and acceleration of upstream

electrons incident on the shock, using magnetic moment conservation in the de Hoffman-
Teller frame, (ii) formation of foreshock electron beams by “time-of-flight” effects, using

Liouville’s theorem, (iii) estimation of the net energy flow Langmuir waves driven by the

electron beams, using quasilinear relaxation and stochastic growth theory, (iv) conversion of

Langmuir energy into radiation near f pe and 2 f pe, using nonlinear Langmuir wave processes

with known conversion efficiencies, with shock propagation through an inhomogeneous

solar wind. Figure 17 shows the dynamic spectrum predicted for a shock moving through an

MHD Parker-model solar wind with two corotating interaction regions (CIRs), two magnetic

clouds (e.g., associated with CMEs), and random small-scale inhomogeneities in plasma

quantities like density, flow speed, and vector magnetic field (Knock and Cairns, 2005).

Features associated with the shock’s interactions with specific CIRs and clouds are identified

(cf., Reiner and Kaiser 1999; Gopalswamy et al., 2001), while the smaller time scale variations

are due to the random solar wind turbulence leading to enhanced or decreased emission

from localized regions of the shock. Moreover, predictions for multiple observers show

considerable differences interpretable in terms of proximity and frequency-blocking effects,

directly relevant to future interpretations of STEREO data. The type II burst model of Knock

and Cairns (2005) reproduces a number of observed features that can be used for more

detailed diagnostic of the underlying shocks. For instance, the intensity of type II bursts

is strongly diminished near a peak in the heliospheric Alfvén speed profile. Other features

observed in dynamic spectra of type II bursts, such as multiple-lane effects, variations in the

frequency-time drift rate dv/dt, onsets and turn-offs of emission, narrowband and broadband

emission, can be reproduced with this type II model by inserting local structures in the coronal

or interplanetary plasma.
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It is envisaged that the microscopic physics of this and other theories will be tested

and improved using future IMPACT and SWAVES data, extended to include macro-

scopic shock and solar wind models and directivity effects, and used to interpret STEREO

white light and radio data in terms of CMEs, shocks, and other interplanetary structures.

For a full understanding of the link between CMEs and type II bursts, knowledge of

strong interplanetary shocks, the macroscopic and microscopic structure of CME-driven

shocks, the generation mechanism of radio emission, and the radiation beaming pattern are

required.

8 Modeling of Solar Energetic Particles (SEPs)

Solar energetic particle (SEP) events refer to accelerated high-energy particles detected

in the heliosphere. Some originate in solar flares, while others are accelerated in transient

interplanetary shocks, as they are produced by fast CMEs. The acceleration mechanisms can

be DC electric fields, stochastic wave-particle interactions, or shock acceleration mechanisms.

Solar energetic particle events are classified into two types, gradual and impulsive SEP

events, depending on their energy versus time profile. Gradual SEP events occur with a rate

of ≈10/year during the maximum of the solar cycle, each one can last several days, and they

are likely to be accelerated directly in interplanetary shocks rather than by flares in the corona.

Impulsive SEP events occur more frequently, with a rate of ≈100/year during the maximum

of the solar cycle, they last only a few hours, and they are much weaker than gradual SEP

events. Since they originate along magnetic field lines connected to coronal flare sites, their

acceleration could be governed by the same magnetic reconnection process that governs the

associated flare. So, charged particles can be used to trace the interplanetary field topology

(Kahler, 1997).

Because the 3He/4He ratio of some SEPs is much higher than in the normal solar wind,

they are also called 3He-rich events. Interplanetary particles can also be accelerated in the

electric fields that are generated at corotating interaction regions (CIR) between high-speed

and low-speed streams. The location where acceleration of interplanetary particles takes

place can approximately be determined from the velocity dispersion (i.e., time-of-flight ef-

fects), tprop = L/v, of particles arriving at Earth. Multi-spacecraft observations help us to

map the spatial distributions of the accelerated particles that flow out into the heliosphere

from the evolving CME shock or those that remain trapped behind it (Reames, 1997). Par-

ticularly advantageous opportunities are in-situ particle observations in CME fronts that

are observed in Earth-STEREO-Sun quadrature configuration (Figure 18), i.e., when the

CME is observed from the side (rather than head-on as with SoHO previously). Such

quadrature observations should reveal the shock profile more clearly than at other viewing

angles.

8.1 Theoretical Modeling of SEP Acceleration

The most recent theoretical modeling of SEP acceleration includes coupled hydromagnetic

wave excitation and ion acceleration in an evolving coronal/interplanetary shock (Lee, 2005),

the injection problem at a CME-driven shock (Zank and Li, 2004), or SEP acceleration in solar

wind compression regions associated with CIRs (Giacalone et al., 2002). The acceleration

of solar energetic particles (SEPs) at an evolving coronal/interplanetary CME-driven shock

is the most promising theory for the origin of SEPs observed in the large gradual events

associated with CMEs (Lee, 2005). This calculation includes the essential features of the
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Fig. 18 Possible STEREO/IMPACT observations of SEPs at two magnetically disconnected locations in the
heliosphere: STEREO-A is located on an open magnetic field line that is connected to the coronal flare region
and will probe flare-accelerated particles, while STEREO-B probes SEPs in-situ in a CME-driven shock in
interplanetary space at 1 AU (IMPACT website)

process: diffusive shock acceleration, proton-excited waves upstream of the shock, and escape

of particles upstream of the shock by magnetic focusing. The wave spectra and particle

distributions predicted are in general agreement with observations but improvement is needed

including the form of the excited wave spectrum, which affects ion fractionation and the

form of the high-energy cutoff, and a more general velocity distribution for the injected

seed population. The seed populations for quasi-perpendicular and quasi-parallel shocks are

subjects of current debates. One thought is that quasi-parallel shocks generally draw their

seeds from solar-wind suprathermals, while quasi-perpendicular shocks–requiring a higher

initial speed for effective injection – preferentially accelerate seed particles from flares. These

different origins of seed populations can explain the observed differences in the composition

of high-energy SEPs (Tylka et al., 2005).

Numerical modeling of SEP acceleration is now approached by combining MHD fluid

codes with kinetic codes, to obtain a self-consistent description of CME shocks and SEP

acceleration. In a recent study SEP particles are accelerated in a CME-driven shock at 5 R�
when the shock exceeds a fast-mode Mach number of �4, producing solar energetic protons

with energies below 10 GeV, for which a cutoff energy of ≈10 GeV would be predicted by

diffusive shock acceleration (Sokolov et al., 2004; Roussev et al., 2004).

8.2 Modeling of SEP for STEREO/IMPACT

STEREO/IMPACT will sample the 3D distributions of SEP ions and electrons, as well as

the local magnetic field (Figure 18). SEP modeling with specific relevance for IMPACT is

described in Ng et al. (1999, 2003). This line of SEP modeling focuses separately on SEP
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Fig. 19 Coupled evolution of 2.6 MeV proton intensity (left) and mean free path (right) versus radius (Ng
et al., 2003)

Fig. 20 Proton acceleration (left) and Alfvén wave growth (right) upstream of a moving shock at ∼3.7 solar
radii (Courtesy of Chee Ng and Don Reames)

transport over several AU and their extension to fast acceleration by a coronal shock on fine

time and spatial scales. Both efforts study the coupled nonlinear evolution of SEPs and Alfvén

waves in inhomogeneous plasma and magnetic field, featuring self-consistent quasilinear

wave-particle interaction with full pitch-angle dependence. Both models include focusing,

convection, adiabatic deceleration, and scattering (by Alfvén waves) for SEPs, and wave

transport and amplification (by SEPs) for the Alfvén waves. The acceleration model treats,

in addition, first-order Fermi acceleration and wave transmission/reflection at the shock. The

results reveal that, contrary to common assumption, wave amplification strongly impacts

SEP acceleration and transport. This transport model predicts the self-throttling of proton

transport through wave excitation (Ng et al., 2003), as shown by the evolution of the radial

profiles of SEP intensity jE and mean free path λ (Figure 19). Wave growth also explains

the observed complex time variations of SEP elemental abundances (Tylka et al., 1999).

The shock acceleration model predicts proton intensity and Alfvén wave spectra evolving

in tandem upstream of a 1800 km/s shock traveling from 3.7 to 4.3 solar radii (Figure 20).
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Acceleration of 1 MeV (70 MeV) protons “ignites” at 18 s (130 s), when wave growth drives

the respective λ down from 0.5 AU (1 AU) to below 10−4 AU. Future work will attempt to

integrate the shock acceleration and interplanetary transport models and to generalize it so

that it can accept arbitrary input of plasma and shock parameters from other CME and shock

models.

Attempts are being made to add SEPs to the Sun-to-Earth end-to-end MHD models at

CCMC, CISM, and University of Michigan, which simulate SEP acceleration in realistic

CME environments (e.g., Roussev et al., 2004). The STEREO multipoint measurements

and multiple viewpoints of the SEP sources will be combined with the models to answer

outstanding questions like the relative contribution of flare versus IP shock-generated SEPs

in major events. Both the Michigan group and the CISM group are attempting these end-to-

end system models, and CCMC has the role of a model component provider to STEREO and

the largr community.

9 Modeling of Geoeffective Events and Space Weather

A key requirement in evaluating geoeffective events and space weather is the determination

of CME trajectories towards Earth, with the goal to establish magnetic connectivity and to

predict the timing and impact of CME-induced geomagnetic disturbances. While previous

single-spacecraft observations (e.g., with SoHO/LASCO) have difficulty in reconstructing

the directionality of CMEs, in particular for frontside halo CMEs, the dual vantage point of the

two STEREO spacecraft will provide less ambiguous directionality measurements and better

arrival forecasts (in real time) from the true 3D vector r(t) and velocity v(t) reconstructions

by the SECCHI/HI imagers. Once the Sun-Earth connectivity of the CME path is established,

we further want to know whether the CME hits the Earth directly, grazes it, or misses it, what

the longitudinal extent and cross-section of a CME is, and what the southward magnetic field

component Bz is (which determines the geoeffectiveness).

Current modeling efforts of space weather are coordinated by Dave Webb (see chapter on

Space Weather and Beacon mode) and by Jim Klimchuk at NRL. MHD Modeling for the

ESA Space Weather Initiative is coordinated by David Berghmans. An effort to model the

geoeffectiveness of CMEs is planned by the 3D reconstruction group led by Volker Bothmer.

Modeling of the magnetic field that connects the subphotospheric domain with the coronal

magnetic field during CME initiation is also addressed by the Solar Multidisciplinary Uni-
versity Research Initiative (SOLAR/MURI) at the University of California, Berkeley (UCB).
Particular efforts to model space weather by end-to-end simulations of CMEs and SEPs

are ongoing at the Center for Integrated Space Weather Modeling (CISM) at the Univer-
sity of California at Berkeley (UCB), and at the Center for Space Environment Modeling
(CSEM) at the University of Michigan, which we partly described in Section 3.2 on he-

liospheric solar wind models. Their Space Weather Modeling Framework (SWMF) aims to

come up with a self-consistent framework of models that starts from the CME initiation in

the solar corona, follows the CME propagation and SEP acceleration through interplane-

tary space, and predicts the consequences in the Earth’s magnetosphere. Part of their space

weather modeling includes also predictions of fluxes and arrival times of high-energy protons

at spacecraft locations, which produce a real radiation hazards for manned and unmanned

spacecraft. More information of the activities of various groups that perform space weather

modeling relevant for the STEREO mission can also be found from the URLs given in

Table 2.
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Table 2 Acronyms and URLs of webpages relevant to modeling of STEREO data

Acronym Full Name�→ Website URL

CACTUS Computer Aided CME Tracking

�→ http://sidc.oma.be/cactus/
CCMC The Community Coordinated Modeling Center

�→ http://ccmc.gsfc.nasa.gov/
CHIANTI Atomic Database for Spectroscopic Diagnostics of Astrophysical Plasmas

�→ http://wwwsolar.nrl.navy.mil/chianti.html/
CISM Center for Integrated Space Weather Modeling

�→ http://www.bu.edu/cism/
CSEM Center for Space Environment Modeling

�→ http://csem.engin.umich.edu/
IMPACT In-situ Measurements of Particles and CME Transients

�→ http://sprg.ssl.berkeley.edu/impact/
PLASTIC PLastic And Supra Thermal Ion Composition investigation

�→ http://stereo.sr.unh.edu/
SECCHI Sun Earth Connection Coronal and Heliospheric Investigation

�→ http://stereo.nrl.navy.mil/
SECCHI/MPS The SECCHI website at Max Planck Institut f ür Sonnenforschung

�→ http://star.rnpae.gwdg.de/secchi/
SMEI/UCSD Solar Mass Ejection Imager, University California San Diego

�→ http://cassfos02. ucsd.edu/solar/
SOHO SOlar and Heliospheric Observatory

�→ http://sohowww.nascom.nasa.gov/
SOLAR-B SOLAR-B mission website

�→ http://www.nasa.gov/mission-pages/solar-b/
SOLAR/MURI Solar Multidisciplinary University Research Initiative at UCB

�→ http://solarmuri.ssl.berkeley.edu/
STEREO The Solar TErrestrial RElations Observatory (STEREO)

�→ http://stereo.gsfc.nasa.gov/
STEREO/SW The STEREO Space Weather Group

�→ http://stereo.nrl.navy.mil/swx/swindex.html
SWAVES The STEREO Waves Instrument

�→ http://www-lep.gsfc.nasa.gov/swaves/swaves.html
TRACE Transition Region And Coronal Explorer

�→ http://sunland.gsfc.nasa.gov/smex/trace/

10 Conclusive Remarks

In this review we described some theoretical tools that already exist or are being prepared

by groups that are committed to the STEREO mission and space weather effort in gen-

eral, which mostly includes models that try to reproduce transient events in the solar wind

and the evolution of coronal mass ejections, but it should not be considered as a com-

plete and exhaustive compilation of relevant theoretical models. There exist a number of

alternative solar wind models that explore the physical processes driving the solar wind

that are not covered here. Since new observations always challenge existing theories and

require new approaches of data modeling we hope that the STEREO mission, once it is

launched and produces science data, will stimulate the development of new models and

discriminatory tests by data fitting in the future. The anticipated STEREO data base will

be an extremely rich database and enable us to model the heliospheric magnetic field and
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propagation of CMEs in unprecedented detail, constrained by true 3D information from

stereoscopic vantage points, yielding the 3D kinematics of MHD processes as well as kinetic

processes associated with the solar wind, CMEs, and particles accelerated in interplane-

tary shocks. Since the STEREO mission is our first extensive multi-spacecraft 3D explo-

ration of our heliosphere, its importance might be compared with the first determination

of the true 3D geometry of our Earth globe by Thales of Milet and Pythagoras around

600 BC.
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D. Odstrc̆il, J.A. Linker, R. Lionello, Z. Mikić, P. Riley, V.J. Pizzo, et al., JGR 107/A12, SSH 14-1 (2002),

CiteID 1493, DOI 10.1029/2002JA009334
D. Odstrc̆il, Adv. Space Res. 32/4, 497 (2003)
D. Odstrc̆il, P. Riley, X.P. Zhao, JGR, 109/A2 (2004a), CideID A02116, DOI 10.1029/2003JA010135
D. Odstrc̆il, V.J. Pizzo, J.A. Linker, P. Riley, R. Lionello, Z. Mikić, J. Atmos. Solar-Terr. Phys. 66, 1311
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P. Riley, Z. Mikić, J.A. Linker, Ann. Geophys. J. 21, 1347 (2003a)
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