107 research outputs found

    Functional and morphological evolution in gymnosperms : a portrait of implicated gene families

    Get PDF
    Gymnosperms diverged from their sister plant clade of flowering plants 300 Mya. Morphological and functional divergence between the two major seed plant clades involved significant changes in their reproductive biology, water‐conducting systems, secondary metabolism, stress defense mechanisms, and small RNA‐mediated epigenetic silencing. The relatively recent sequencing of several gymnosperm genomes and the development of new genomic resources have enabled whole‐genome comparisons within gymnosperms, and between angiosperms and gymnosperms. In this paper, we aim to understand how genes and gene families have contributed to the major functional and morphological differences in gymnosperms, and how this information can be used for applied breeding and biotechnology. In addition, we have analyzed the angiosperm versus gymnosperm evolution of the pleiotropic drug resistance (PDR) gene family with a wide range of functionalities in plants' interaction with their environment including defense mechanisms. Some of the genes reviewed here are newly studied members of gene families that hold potential for biotechnological applications related to commercial and pharmacological value. Some members of conifer gene families can also be exploited for their potential in phytoremediation applications

    Single-step BLUP with varying genotyping effort in open-pollinated Picea glauca

    Get PDF
    Maximization of genetic gain in forest tree breeding programs is contingent on the accuracy of the predicted breeding values and precision of the estimated genetic parameters. We investigated the effect of the combined use of contemporary pedigree information and genomic relatedness estimates on the accuracy of predicted breeding values and precision of estimated genetic parameters, as well as rankings of selection candidates, using single-step genomic evaluation (HBLUP). In this study, two traits with diverse heritabilities [tree height (HT) and wood density (WD)] were assessed at various levels of family genotyping efforts (0, 25, 50, 75, and 100%) from a population of white spruce (Picea glauca) consisting of 1694 trees from 214 open-pollinated families, representing 43 provenances in QuĂ©bec, Canada. The results revealed that HBLUP bivariate analysis is effective in reducing the known bias in heritability estimates of open-pollinated populations, as it exposes hidden relatedness, potential pedigree errors, and inbreeding. The addition of genomic information in the analysis considerably improved the accuracy in breeding value estimates by accounting for both Mendelian sampling and historical coancestry that were not captured by the contemporary pedigree alone. Increasing family genotyping efforts were associated with continuous improvement in model fit, precision of genetic parameters, and breeding value accuracy. Yet, improvements were observed even at minimal genotyping effort, indicating that even modest genotyping effort is effective in improving genetic evaluation. The combined utilization of both pedigree and genomic information may be a cost-effective approach to increase the accuracy of breeding values in forest tree breeding programs where shallow pedigrees and large testing populations are the norm.Inst. de Recursos BiolĂłgicosFil: Rateliffe, Blaise. University of British Columbia, Faculty of Forestry. Department of Forest and Conservation Sciences; CanadĂĄFil: El-Dien, Omnia Gamal. University of British Columbia, Faculty of Forestry. Department of Forest and Conservation Sciences; CanadĂĄ. Alexandria University. Faculty of Pharmacy. Pharmacognosy Department; EgiptoFil: Cappa, Eduardo Pablo. Instituto Nacional de TecnologĂ­a Agropecuaria (INTA). Instituto de Recursos BiolĂłgicos; ArgentinaFil: Porth, Ilga. UniversitĂ© Laval QuĂ©bec. FacultĂ© de Foresterie, de GĂ©ographie et GĂ©omatique. DĂ©partment des Sciences du Bois et de la ForĂȘt; CanadĂĄFil: Klapste, Jaroslav. Czech University of Life Sciences Prague. Faculty of Forestry and Wood Sciences. Department of Genetics and Physiology of Forest Trees; RepĂșblica Checa. Scion (New Zealand Forest Research Institute Ltd.); Nueva ZelandaFil: El-Kassaby, Yousry A. University of British Columbia, Faculty of Forestry. Department of Forest and Conservation Sciences; CanadĂĄFil: Chen, Charles. Oklahoma State University. Department of Biochemistry and Molecular Biology; Estados Unido

    Genomic diversity evaluation of populus trichocarpa germplasm for rare variant genetic association studies

    Get PDF
    Genome-wide association studies are powerful tools to elucidate the genome-to-phenomerelationship. In order to explain most of the observed heritability of a phenotypic trait, asufficient number of individuals and a large set of genetic variants must be examined. Thedevelopment of high-throughput technologies and cost-efficient resequencing of completegenomes have enabled the genome-wide identification of genetic variation at large scale.As such, almost all existing genetic variation becomes available, and it is now possible toidentify rare genetic variants in a population sample. Rare genetic variants that were usuallyfiltered out in most genetic association studies are the most numerous genetic variationsacross genomes and hold great potential to explain a significant part of the missingheritability observed in association studies. Rare genetic variants must be identified withhigh confidence, as they can easily be confounded with sequencing errors. In this study,we used a pre-filtered data set of 1,014 purePopulus trichocarpaentire genomes toidentify rare and common small genetic variants across individual genomes. We comparedvariant calls betweenPlatypusandHaplotypeCallerpipelines, and we further applied strictqualityfilters for improved genetic variant identification. Finally, we only retained geneticvariants that were identified by both variant callers increasing calling confidence. Based onthese shared variants and after stringent qualityfiltering, we found high genomic diversity inP. trichocarpagermplasm, with 7.4 million small genetic variants. Importantly, 377k non-synonymous variants (5% of the total) were uncovered. We highlight the importance ofgenomic diversity and the potential of rare defective genetic variants in explaining asignificant portion ofP. trichocarpa's phenotypic variability in association genetics. Theultimate goal is to associate both rare and common alleles with poplar's wood quality traitsto support selective breeding for an improved bioenergy feedstock

    Linkage disequilibrium vs. pedigree: Genomic selection prediction accuracy in conifer species

    Get PDF
    Background The presupposition of genomic selection (GS) is that predictive accuracies should be based on population-wide linkage disequilibrium (LD). However, in species with large, highly complex genomes the limitation of marker density may preclude the ability to resolve LD accurately enough for GS. Here we investigate such an effect in two conifer species with similar to 20 Gbp genomes, Douglas-fir (Pseudotsuga menziesiiMirb. (Franco)) and Interior spruce (Picea glauca(Moench) Voss xPicea engelmanniiParry ex Engelm.). Random sampling of markers was performed to obtain SNP sets with totals in the range of 200-50,000, this was replicated 10 times. Ridge Regression Best Linear Unbiased Predictor (RR-BLUP) was deployed as the GS method to test these SNP sets, and 10-fold cross-validation was performed on 1,321 Douglas-fir trees, representing 37 full-sib F(1)families and on 1,126 Interior spruce trees, representing 25 open-pollinated (half-sib) families. Both trials are located on 3 sites in British Columbia, Canada. Results As marker number increased, so did GS predictive accuracy for both conifer species. However, a plateau in the gain of accuracy became apparent around 10,000-15,000 markers for both Douglas-fir and Interior spruce. Despite random marker selection, little variation in predictive accuracy was observed across replications. On average, Douglas-fir prediction accuracies were higher than those of Interior spruce, reflecting the difference between full- and half-sib families for Douglas-fir and Interior spruce populations, respectively, as well as their respective effective population size. Conclusions Although possibly advantageous within an advanced breeding population, reducing marker density cannot be recommended for carrying out GS in conifers. Significant LD between markers and putative causal variants was not detected using 50,000 SNPS, and GS was enabled only through the tracking of relatedness in the populations studied. Dramatically increasing marker density would enable said markers to better track LD with causal variants in these large, genetically diverse genomes; as well as providing a model that could be used across populations, breeding programs, and traits

    Coping with Environmental Constraints: Geographically Divergent Adaptive Evolution and Germination Plasticity in the Transcontinental \u3cem\u3ePopulus tremuloides\u3c/em\u3e

    Get PDF
    Societal Impact Statement Syntheses clearly show that global warming is affecting ecosystems and biodiversity around the world. New methods and measures are needed to predict the climate resilience of plant species critical to ecosystem stability, to improve ecological management and to support habitat restoration and human well-being. Widespread keystone species such as aspen are important targets in the study of resilience to future climate conditions because they play a crucial role in maintaining various ecosystem functions and may contain genetic material with untapped adaptive potential. Here, we present a new framework in support of climate-resilient revegetation based on comprehensively understood patterns of genetic variation in aspen. Summary Elucidating species\u27 genetic makeup and seed germination plasticity is essential to inform tree conservation efforts in the face of climate change. Populus tremuloides Michx. (aspen) occurs across diverse landscapes and reaches from Alaska to central Mexico, thus representing an early-successional model for ecological genomics. Within drought-affected regions, aspen shows ploidy changes and/or shifts from sexual to clonal reproduction, and reduced diversity and dieback have already been observed. We genotyped over 1000 individuals, covering aspen\u27s entire range, for approximately 44,000 single-nucleotide polymorphisms (SNPs) to assess large-scale and fine-scale genetic structure, variability in reproductive type (sexual/clonal), polyploidy and genomic regions under selection. We developed and implemented a rapid and reliable analysis pipeline (FastPloidy) to assess the presence of polyploidy. To gain insights into plastic responses, we contrasted seed germination from western US and eastern Canadian natural populations under elevated temperature and water stress. Four major genetic clusters were identified range wide; a preponderance of triploids and clonemates was found within western and southern North American regions, respectively. Genomic regions involving approximately 1000 SNPs under selection were identified with association to temperature and precipitation variation. Under drought stress, western US genotypes exhibited significantly lower germination rates compared with those from eastern North America, a finding that was unrelated to differences in mutation load (ploidy). This study provided new insights into the adaptive evolution of a key indicator tree that provisions crucial ecosystem services across North America, but whose presence is steadily declining within its western distribution. We uncovered untapped adaptive potential across the species\u27 range which can form the basis for climate-resilient revegetation

    Unraveling the evolutionary dynamics of the TPS gene family in land plants

    Get PDF
    Terpenes and terpenoids are key natural compounds for plant defense, development, and composition of plant oil. The synthesis and accumulation of a myriad of volatile terpenoid compounds in these plants may dramatically alter the quality and flavor of the oils, which provide great commercial utilization value for oil-producing plants. Terpene synthases (TPSs) are important enzymes responsible for terpenic diversity. Investigating the differentiation of the TPS gene family could provide valuable theoretical support for the genetic improvement of oil-producing plants. While the origin and function of TPS genes have been extensively studied, the exact origin of the initial gene fusion event - it occurred in plants or microbes - remains uncertain. Furthermore, a comprehensive exploration of the TPS gene differentiation is still pending. Here, phylogenetic analysis revealed that the fusion of the TPS gene likely occurred in the ancestor of land plants, following the acquisition of individual C- and N- terminal domains. Potential mutual transfer of TPS genes was observed among microbes and plants. Gene synteny analysis disclosed a differential divergence pattern between TPS-c and TPS-e/f subfamilies involved in primary metabolism and those (TPS-a/b/d/g/h subfamilies) crucial for secondary metabolites. Biosynthetic gene clusters (BGCs) analysis suggested a correlation between lineage divergence and potential natural selection in structuring terpene diversities. This study provides fresh perspectives on the origin and evolution of the TPS gene family

    Haplotype-resolved genome assembly and allele-specific gene expression in cultivated ginger

    Get PDF
    Ginger (Zingiber officinale) is one of the most valued spice plants worldwide; it is prized for its culinary and folk medicinal applications and is therefore of high economic and cultural importance. Here, we present a haplotype-resolved, chromosome-scale assembly for diploid ginger anchored to 11 pseudochromosome pairs with a total length of 3.1 Gb. Remarkable structural variation was identified between haplotypes, and two inversions larger than 15 Mb on chromosome 4 may be associated with ginger infertility. We performed a comprehensive, spatiotemporal, genome-wide analysis of allelic expression patterns, revealing that most alleles are coordinately expressed. The alleles that exhibited the largest differences in expression showed closer proximity to transposable elements, greater coding sequence divergence, more relaxed selection pressure, and more transcription factor binding site differences. We also predicted the transcription factors potentially regulating 6-gingerol biosynthesis. Our allele-aware assembly provides a powerful platform for future functional genomics, molecular breeding, and genome editing in ginger.https://www.nature.com/hortreshj2022BiochemistryGeneticsMicrobiology and Plant Patholog

    Global urban environmental change drives adaptation in white clover

    Get PDF
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale
    • 

    corecore