1,036 research outputs found
Hierarchical Spatio-Temporal Morphable Models for Representation of complex movements for Imitation Learning
Imitation learning is a promising technique for teaching robots complex movement sequences. One key problem in this area is the transfer of perceived movement characteristics from perception to action. For the solution of this problem, representations are required that are suitable for the analysis and the synthesis of complex action sequences. We describe the method of Hierarchical Spatio-Temporal Morphable Models that allows an automatic segmentation of movements sequences into movement primitives, and a modeling of these primitives by morphing between a set of prototypical trajectories. We use HSTMMs in an imitation learning task for human writing movements. The models are learned from recorded trajectories and transferred to a human-like robot arm. Due to the generalization proper- ties of our movement representation, the arm is capable of synthesizing new writing movements with only a few learning examples
Recommended from our members
Diffusion-jump model for the combined Brownian and Neel relaxation dynamics of ferrofluids in the presence of external fields and flow
Relaxation of suspended magnetic nanoparticles occurs via Brownian rotational diffusion of the particle as well as internal magnetization dynamics. The latter is often modeled by the stochastic Landau-Lifshitz equation, but its numerical treatment becomes prohibitively expensive in many practical applications due to a time-scale separation between fast, Larmor-type precession and slow, barrier-crossing dynamics. Here, a diffusion-jump model is proposed to take advantage of the time-scale separation and to approximate barrier-crossings as thermally activated jump processes that occur alongside rotational diffusion. The predictions of our diffusion-jump model are compared to reference results obtained by solving the stochastic Landau-Lifshitz equation coupled to rotational Brownian motion. Good agreement is found in the regime of high energy barriers where Neel relaxation can be considered a thermally activated rare event. While many works in the field have neglected N\'eel relaxation altogether, our approach opens the possibility to efficiently include Neel relaxation also into interacting many-particle models
Shear-induced anisotropic decay of correlations in hard-sphere colloidal glasses
Spatial correlations of microscopic fluctuations are investigated via
real-space experiments and computer simulations of colloidal glasses under
steady shear. It is shown that while the distribution of one-particle
fluctuations is always isotropic regardless of the relative importance of shear
as compared to thermal fluctuations, their spatial correlations show a marked
sensitivity to the competition between shear-induced and thermally activated
relaxation. Correlations are isotropic in the thermally dominated regime, but
develop strong anisotropy as shear dominates the dynamics of microscopic
fluctuations. We discuss the relevance of this observation for a better
understanding of flow heterogeneity in sheared amorphous solids.Comment: 6 pages, 4 figure
A Striking Case of Enantioinversion in Gold Catalysis and Its Probable Origins
The cyclization of the hydroxy-allene 2 to the tetrahydrofuran 3 catalyzed by the gold-phosphoramidite complex 1, after ionization with an appropriate silver salt AgX, is one of the most striking cases of enantioinversion known to date. The major reason why the sense of induction can be switched from (S) to (R) solely by changing either the solvent or the temperature or the nature of the counterion X is likely found in the bias of the organogold intermediates to undergo assisted proto-deauration. Such assistance can be provided by a protic solvent, a reasonably coordinating counterion or even by a second substrate molecule itself; in this case, the reaction free energy profile gains a strong entropic component that can ultimately dictate the stereochemical course
Consensus Paper: Neurophysiological Assessments of Ataxias in Daily Practice
The purpose of this consensus paper is to review electrophysiological abnormalities and to provide a guideline of neurophysiological assessments in cerebellar ataxias. All authors agree that standard electrophysiological methods should be systematically applied in all cases of ataxia to reveal accompanying peripheral neuropathy, the involvement of the dorsal columns, pyramidal tracts and the brainstem. Electroencephalography should also be considered, although findings are frequently non-specific. Electrophysiology helps define the neuronal systems affected by the disease in an individual patient and to understand the phenotypes of the different types of ataxia on a more general level. As yet, there is no established electrophysiological measure which is sensitive and specific of cerebellar dysfunction in ataxias. The authors agree that cerebellar brain inhibition (CBI), which is based on a paired-pulse transcranial magnetic stimulation (TMS) paradigm assessing cerebellar-cortical connectivity, is likely a useful measure of cerebellar function. Although its role in the investigation and diagnoses of different types of ataxias is unclear, it will be of interest to study its utility in this type of conditions. The authors agree that detailed clinical examination reveals core features of ataxia (i.e., dysarthria, truncal, gait and limb ataxia, oculomotor dysfunction) and is sufficient for formulating a differential diagnosis. Clinical assessment of oculomotor function, especially saccades and the vestibulo-ocular reflex (VOR) which are most easily examined both at the bedside and with quantitative testing techniques, is of particular help for differential diagnosis in many cases. Pure clinical measures, however, are not sensitive enough to reveal minute fluctuations or early treatment response as most relevant for pre-clinical stages of disease which might be amenable to study in future intervention trials. The authors agree that quantitative measures of ataxia are desirable as biomarkers. Methods are discussed that allow quantification of ataxia in laboratory as well as in clinical and real-life settings, for instance at the patients' home. Future studies are needed to demonstrate their usefulness as biomarkers in pharmaceutical or rehabilitation trials
Cavalier King Charles Spaniels with Chiari-like malformation and Syringomyelia have increased variability of spatio-temporal gait characteristics
Abstract Background Chiari-like malformation in the Cavalier King Charles Spaniel is a herniation of the cerebellum and brainstem into or through the foramen magnum. This condition predisposes to Syringomyelia; fluid filled syrinxes within the spinal cord. The resulting pathology in spinal cord and cerebellum create neuropathic pain and changes in gait. This study aims to quantify the changes in gait for Cavalier King Charles Spaniel with Chiari-like malformation and Syringomyelia. Methods We compared Cavalier King Charles Spaniel with Chiari-like malformation with (n = 9) and without (n = 8) Syringomyelia to Border Terriers (n = 8). Two video cameras and manual tracking was used to quantify gait parameters. Results and conclusions We found a significant increase in coefficient of variation for the spatio-temporal characteristics and ipsilateral distance between paws and a wider base of support in the thoracic limbs but not in the pelvic limbs for Cavalier King Charles Spaniels compared with the border terrier
Exercise and Physical Therapy Interventions for Children with Ataxia: a systematic review
The effectiveness of exercise and physical therapy for children with ataxia is poorly understood. The aim of this systematic review was to critically evaluate the range, scope and methodological quality of studies investigating the effectiveness of exercise and physical therapy interventions for children with ataxia. The following databases were searched: AMED, CENTRAL, CDSR, CINAHL, ClinicalTrials.gov, EMBASE, Ovid MEDLINE, PEDro and Web of Science. No limits were placed on language, type of study or year of publication. Two reviewers independently determined whether the studies met the inclusion criteria, extracted all relevant outcomes, and conducted methodological quality assessments. A total of 1988 studies were identified, and 124 full texts were screened. Twenty studies were included in the review. A total of 40 children (aged 5-18Â years) with ataxia as a primary impairment participated in the included studies. Data were able to be extracted from eleven studies with a total of 21 children (aged 5-18Â years), with a range of cerebellar pathology. The studies reported promising results but were of low methodological quality (no RCTs), used small sample sizes and were heterogeneous in terms of interventions, participants and outcomes. No firm conclusions can be made about the effectiveness of exercise and physical therapy for children with ataxia. There is a need for further high-quality child-centred research
Quantitative Gait and Balance Outcomes for Ataxia Trials: Consensus Recommendations by the Ataxia Global Initiative Working Group on Digital-Motor Biomarkers
\ua9 2023, The Author(s).With disease-modifying drugs on the horizon for degenerative ataxias, ecologically valid, finely granulated, digital health measures are highly warranted to augment clinical and patient-reported outcome measures. Gait and balance disturbances most often present as the first signs of degenerative cerebellar ataxia and are the most reported disabling features in disease progression. Thus, digital gait and balance measures constitute promising and relevant performance outcomes for clinical trials. This narrative review with embedded consensus will describe evidence for the sensitivity of digital gait and balance measures for evaluating ataxia severity and progression, propose a consensus protocol for establishing gait and balance metrics in natural history studies and clinical trials, and discuss relevant issues for their use as performance outcomes
Abordagem fisioterapêutica da ataxia espinocerebelar: uma revisão sistemática
A ataxia espinocerebelar (SCA) Ă© uma afecção hereditária que cursa com a degeneração progressiva do cerebelo e suas vias, causando alterações do equilĂbrio e de outras funções. O efeito das abordagens da fisioterapia no tratamento da SCA e a qualidade metodolĂłgica desses estudos foram analisados. Foi investigado ainda se os benefĂcios alcançados com o tratamento sĂŁo retidos. As intervenções encontradas incluem treino do equilĂbrio, marcha e coordenação; fortalecimento; caneleiras nos membros durante exercĂcios e aplicação de estimulação magnĂ©tica transcraniana. A retenção das melhoras obtidas com o tratamento foi relacionada ao grau de evolução da SCA e Ă continuidade da prática de exercĂcios. PorĂ©m, novos estudos com maior rigor cientĂfico sĂŁo necessários para eleger as abordagens mais adequadas para o tratamento de portadores de SCA
Ideal contribution to the macroscopic quasiequilibrium entropy of anisotropic fluids
The Landau-de Gennes free energy plays a central role in the macroscopic theory of anisotropic fluids. Here, the ideal, entropic contribution to this free energy—that is always present in these systems, irrespectively of the detailed form of interactions or applied fields—is derived within the quasiequilibrium ensemble and successfully tested. An explicit and compact form of the macroscopic, ideal entropy is derived. This entropy is nonpolynomial in the order parameter, diverging logarithmically near the fully oriented state and therefore restricting the order parameter to physical admissible values. As an application, it is shown that the isotropic-nematic transition within the Maier-Saupe model is described in a simple and very accurate manner
- …