710 research outputs found

    Mass assembly in quiescent and star-forming galaxies since z ≃ 4 from UltraVISTA

    Get PDF
    We estimate the galaxy stellar mass function and stellar mass density for star-forming and quiescent galaxies with 0.2 1.5 consistent with the expected uncertainties. We also develop a new method to infer the specific star formation rate from the mass function of star-forming galaxies. We find that the specific star formation rate of 10^(10−10.5)ℳ_⊙ galaxies increases continuously in the redshift range 1 < z < 4. Finally, we compare our results with a semi-analytical model and find that these models overestimate the density of low mass quiescent galaxies by an order of magnitude, while the density of low-mass star-forming galaxies is successfully reproduced

    Evolution of hierarchical clustering in the CFHTLS-Wide since z~1

    Full text link
    We present measurements of higher order clustering of galaxies from the latest release of the Canada-France-Hawaii-Telescope Legacy Survey (CFHTLS) Wide. We construct a volume-limited sample of galaxies that contains more than one million galaxies in the redshift range 0.2<z<1 distributed over the four independent fields of the CFHTLS. We use a counts in cells technique to measure the variance and the hierarchical moments S_n = /^(n-1) (3<n<5) as a function of redshift and angular scale.The robustness of our measurements if thoroughly tested, and the field-to-field scatter is in very good agreement with analytical predictions. At small scales, corresponding to the highly non-linear regime, we find a suggestion that the hierarchical moments increase with redshift. At large scales, corresponding to the weakly non-linear regime, measurements are fully consistent with perturbation theory predictions for standard LambdaCDM cosmology with a simple linear bias.Comment: 17 pages, 11 figures, submitted to MNRA

    Comparison of the properties of two fossil groups of galaxies with the normal group NGC 6034 based on multiband imaging and optical spectroscopy

    Full text link
    We collected multiband imaging and spectroscopy for two fossil groups (RX J1119.7+2126 and 1RXS J235814.4+150524) and one normal group (NGC 6034). We computed photometric redshifts in the central zones of each group, combining previous data with the SDSS five-band data. For each group we investigated the red sequence (RS) of the color-magnitude relation and computed the luminosity functions, stellar population ages and distributions of the group members. Spectroscopy allowed us to investigate the large-scale surroundings of these groups and the substructure levels in 1RXS J235814.4+150524 and NGC 6034. The large-scale environment of 1RXS J235814.4+150524 is poor, though its galaxy density map shows a clear signature of the surrounding cosmic web. RX J1119.7+2126 appears to be very isolated, while the cosmic environment of NGC 6034 is very rich. At the group scale, 1RXS J235814.4+150524 shows no substructure. Galaxies with recent stellar populations seem preferentially located in the group outskirts. A RS is discernable for all three groups in a color-magnitude diagram. The luminosity functions based on photometric redshift selection and on statistical background subtraction have comparable shapes, and agree with the few points obtained from spectroscopic redshifts. These luminosity functions show the expected dip between first and second brightest galaxies for the fossil groups only. Their shape is also regular and relatively flat at faint magnitudes down to the completeness level for RX J1119.7+2126 and NGC 6034, while there is a clear lack of faint galaxies for 1RXS J235814.4+150524. RX J1119.7+2126 is definitely classified as a fossil group; 1RXS J235814.4+150524 also has properties very close to those of a fossil group, while we confirm that NGC 6034 is a normal group.Comment: Accepted in A&A, english-improved, 5 jpeg figures, and shortened abstrac

    A Far-infrared Characterization of 24 ÎŒm Selected Galaxies at 0 < z < 2.5 using Stacking at 70 ÎŒm and 160 ÎŒm in the COSMOS Field

    Get PDF
    We present a study of the average properties of luminous infrared galaxies detected directly at 24 ÎŒm in the COSMOS field using a median stacking analysis at 70 ÎŒm and 160 ÎŒm. Over 35,000 sources spanning 0 ≀ z ≀ 3 and 0.06 mJy ≀ S_(24) ≀ 3.0 mJy are stacked, divided into bins of both photometric redshift and 24 ÎŒm flux. We find no correlation of S_(70)/S_(24) flux density ratio with S_(24), but find that galaxies with higher S_(24) have a lower S_(160)/S_(24) flux density ratio. These observed ratios suggest that 24 ÎŒm selected galaxies have warmer spectral energy distributions (SEDs) at higher mid-IR fluxes, and therefore have a possible higher fraction of active galactic nuclei. Comparisons of the average S_(70)/S_(24) and S_(160)/S_(24) colors with various empirical templates and theoretical models show that the galaxies detected at 24 ÎŒm are consistent with "normal" star-forming galaxies and warm mid-IR galaxies such as Mrk 231, but inconsistent with heavily obscured galaxies such as Arp 220. We perform a χ^2 analysis to determine best-fit galactic model SEDs and total IR luminosities for each of our bins. We compare our results to previous methods of estimating L IR and find that previous methods show considerable agreement over the full redshift range, except for the brightest S_(24) sources, where they overpredict the bolometric IR luminosity at high redshift, most likely due to their warmer dust SED. We present a table that can be used as a more accurate and robust method for estimating bolometric infrared luminosity from 24 ÎŒm flux densities

    Evolution of the Fraction of Clumpy Galaxies at 0.2<z<1.0 in the COSMOS field

    Get PDF
    Using the Hubble Space Telescope/Advanced Camera for Surveys data in the COSMOS field, we systematically searched clumpy galaxies at 0.2<z<1.0 and investigated the fraction of clumpy galaxies and its evolution as a function of stellar mass, star formation rate (SFR), and specific SFR (SSFR). The fraction of clumpy galaxies in star-forming galaxies with Mstar > 10^9.5 Msun decreases with time from ~0.35 at 0.8<z<1.0 to ~0.05 at 0.2<z<0.4 irrespective of the stellar mass, although the fraction tends to be slightly lower for massive galaxies with Mstar > 10^10.5 Msun at each redshift. On the other hand, the fraction of clumpy galaxies increases with increasing both SFR and SSFR in all the redshift ranges we investigated. In particular, we found that the SSFR dependences of the fractions are similar among galaxies with different stellar masses, and the fraction at a given SSFR does not depend on the stellar mass in each redshift bin. The evolution of the fraction of clumpy galaxies from z~0.9 to z~0.3 seems to be explained by such SSFR dependence of the fraction and the evolution of SSFRs of star-forming galaxies. The fraction at a given SSFR also appears to decrease with time, but this can be due to the effect of the morphological K-correction. We suggest that these results are understood by the gravitational fragmentation model for the formation of giant clumps in disk galaxies, where the gas mass fraction is a crucial parameter.Comment: 14 Pages, 13 Figures, 1 Table, Accepted for publication in Ap

    Star-forming galaxies versus low- and high-excitation radio AGN in the VLA-COSMOS 3GHz Large Project

    Get PDF
    We study the composition of the faint radio population selected from the VLA-COSMOS 3GHz Large Project, a radio continuum survey performed at 10 cm wavelength. The survey covers the full 2 square degree COSMOS field with mean rms∌2.3rms\sim2.3 ÎŒ\muJy/beam, cataloging 10,899 source components above 5×rms5\times rms. By combining these radio data with UltraVISTA, optical, near-infrared, and Spitzer/IRAC mid-infrared data, as well as X-ray data from the Chandra Legacy, and Chandra COSMOS surveys, we gain insight into the emission mechanisms within our radio sources out to redshifts of z∌5z\sim5. From these emission characteristics we classify our souces as star forming galaxies or AGN. Using their multi-wavelength properties we further separate the AGN into sub-samples dominated by radiatively efficient and inefficient AGN, often referred to as high- and low-excitation emission line AGN. We compare our method with other results based on fitting of the sources' spectral energy distributions using both galaxy and AGN spectral models, and those based on the infrared-radio correlation. We study the fractional contributions of these sub-populations down to radio flux levels of ∌\sim10 ÎŒ\muJy. We find that at 3 GHz flux densities above ∌\sim400 ÎŒ\muJy quiescent, red galaxies, consistent with the low-excitation radio AGN class constitute the dominant fraction. Below densities of ∌\sim200 ÎŒ\muJy star-forming galaxies begin to constitute the largest fraction, followed by the low-excitation, and X-ray- and IR-identified high-excitation radio AGN.Comment: 7 pages, 3 figures, The many facets of extragalactic radio surveys: towards new scientific challenges, Bologna 20-23 October 201

    Star formation in galaxies at z~4-5 from the SMUVS survey: a clear starburst/main-sequence bimodality for Halpha emitters on the SFR-M* plane

    Get PDF
    We study a large galaxy sample from the Spitzer Matching Survey of the UltraVISTA ultra-deep Stripes (SMUVS) to search for sources with enhanced 3.6 micron fluxes indicative of strong Halpha emission at z=3.9-4.9. We find that the percentage of "Halpha excess" sources reaches 37-40% for galaxies with stellar masses log10(M*/Msun) ~ 9-10, and decreases to <20% at log10(M*/Msun) ~ 10.7. At higher stellar masses, however, the trend reverses, although this is likely due to AGN contamination. We derive star formation rates (SFR) and specific SFR (sSFR) from the inferred Halpha equivalent widths (EW) of our "Halpha excess" galaxies. We show, for the first time, that the "Halpha excess" galaxies clearly have a bimodal distribution on the SFR-M* plane: they lie on the main sequence of star formation (with log10(sSFR/yr^{-1})<-8.05) or in a starburst cloud (with log10(sSFR/yr^{-1}) >-7.60). The latter contains ~15% of all the objects in our sample and accounts for >50% of the cosmic SFR density at z=3.9-4.9, for which we derive a robust lower limit of 0.066 Msun yr^{-1} Mpc^{-3}. Finally, we identify an unusual >50sigma overdensity of z=3.9-4.9 galaxies within a 0.20 x 0.20 sq. arcmin region. We conclude that the SMUVS unique combination of area and depth at mid-IR wavelengths provides an unprecedented level of statistics and dynamic range which are fundamental to reveal new aspects of galaxy evolution in the young Universe.Comment: 18 pages, 11 figures, 1 table. Re-submitted to the ApJ, after addressing referee report. Main changes with respect to v1: a new section and a new appendix have been added to investigate further the origin and robustness of the sSFR bimodality. No conclusion change

    Recovering the properties of high redshift galaxies with different JWST broad-band filters

    Get PDF
    Imaging with the James Webb Space Telescope (JWST) will allow for observing the bulk of distant galaxies at the epoch of reionisation. The recovery of their properties, such as age, color excess E(B-V), specific star formation rate (sSFR) and stellar mass, will mostly rely on spectral energy distribution fitting, based on the data provided by JWST's two imager cameras, namely the Near Infrared Camera (NIRCam) and the Mid Infrared Imager (MIRI). In this work we analyze the effect of choosing different combinations of NIRCam and MIRI broad-band filters, from 0.6 {\mu}m to 7.7 {\mu}m, on the recovery of these galaxy properties. We performed our tests on a sample of 1542 simulated galaxies, with known input properties, at z=7-10. We found that, with only 8 NIRCam broad-bands, we can recover the galaxy age within 0.1 Gyr and the color excess within 0.06 mag for 70% of the galaxies. Besides, the stellar masses and sSFR are recovered within 0.2 and 0.3 dex, respectively, at z=7-9. Instead, at z=10, no NIRCam band traces purely the {\lambda}> 4000 {\AA} regime and the percentage of outliers in stellar mass (sSFR) increases by > 20% (> 90%), in comparison to z=9. The MIRI F560W and F770W bands are crucial to improve the stellar mass and the sSFR estimation at z=10. When nebular emission lines are present, deriving correct galaxy properties is challenging, at any redshift and with any band combination. In particular, the stellar mass is systematically overestimated in up to 0.3 dex on average with NIRCam data alone and including MIRI observations improves only marginally the estimation.Comment: 21 pages, 11 figures, 4 tables. Accepted for publication at the ApJ

    Euclid preparation: XI. Mean redshift determination from galaxy redshift probabilities for cosmic shear tomography

    Full text link
    The analysis of weak gravitational lensing in wide-field imaging surveys is considered to be a major cosmological probe of dark energy. Our capacity to constrain the dark energy equation of state relies on an accurate knowledge of the galaxy mean redshift ⟹z⟩. We investigate the possibility of measuring ⟹z⟩ with an accuracy better than 0.002 (1 + z) in ten tomographic bins spanning the redshift interval 0.2  99.8%. The zPDF approach can also be successful if the zPDF is de-biased using a spectroscopic training sample. This approach requires deep imaging data but is weakly sensitive to spectroscopic redshift failures in the training sample. We improve the de-biasing method and confirm our finding by applying it to real-world weak-lensing datasets (COSMOS and KiDS+VIKING-450)
    • 

    corecore