2,977 research outputs found

    Superlattice properties of carbon nanotubes in a transverse electric field

    Get PDF
    Electron motion in a (n,1) carbon nanotube is shown to correspond to a de Broglie wave propagating along a helical line on the nanotube wall. This helical motion leads to periodicity of the electron potential energy in the presence of an electric field normal to the nanotube axis. The period of this potential is proportional to the nanotube radius and is greater than the interatomic distance in the nanotube. As a result, the behavior of an electron in a (n,1) nanotube subject to a transverse electric field is similar to that in a semiconductor superlattice. In particular, Bragg scattering of electrons from the long-range periodic potential results in the opening of gaps in the energy spectrum of the nanotube. Modification of the bandstructure is shown to be significant for experimentally attainable electric fields, which raises the possibility of applying this effect to novel nanoelectronic devices.Comment: 7 pages, 3 figure

    Field‐aligned currents during IMF ∼0

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95012/1/grl14623.pd

    Electroneutrality and the Friedel sum rule in a Luttinger liquid

    Full text link
    Screening in one-dimensional metals is studied for arbitrary electron-electron interactions. It is shown that for finite-range interactions (Luttinger liquid) electroneutrality is violated. This apparent inconsistency can be traced to the presence of external screening gates responsible for the effectively short-ranged Coulomb interactions. We also draw attention to the breakdown of linear screening for wavevectors close to 2 K_f.Comment: 4 pages REVTeX, incl one figure, to appear in Phys.Rev.Let

    Pressure-Induced Interlinking of Carbon Nanotubes

    Get PDF
    We predict new forms of carbon consisting of one and two dimensional networks of interlinked single wall carbon nanotubes, some of which are energetically more stable than van der Waals packing of the nanotubes on a hexagonal lattice. These interlinked nanotubes are further transformed with higher applied external pressures to more dense and complicated stable structures, in which curvature-induced carbon sp3^{3} re-hybridizations are formed. We also discuss the energetics of the bond formation between nanotubes and the electronic properties of these predicted novel structures.Comment: 4 pages, 4 postscript figures; To be appear in PR

    Structure and stability of finite gold nanowires

    Full text link
    Finite gold nanowires containing less than 1000 atoms are studied using the molecular dynamics simulation method and embedded atom potential. Nanowires with the face-centered cubic structure and the (111) oriented cross-section are prepared at T=0 K. After annealing and quenching the structure and vibrational properties of nanowires are studied at room temperature. Several of these nanowires form multi-walled structures of lasting stability. They consist of concentrical cylindrical sheets and resemble multi-walled carbon nanotubes. Vibrations are investigated by diagonalization of the dynamical matrix. It was found that several percents of vibrational modes are unstable because of uncompleted restructuring of initial fcc nanowires.Comment: 4 figures in gif forma

    Exo-hydrogenated Single Wall Carbon Nanotubes

    Full text link
    An extensive first-principles study of fully exo-hydrogenated zigzag (n,0) and armchair (n,n) single wall carbon nanotubes (Cn_nHn_n), polyhedral molecules including cubane, dodecahedrane, and C60_{60}H60_{60} points to crucial differences in the electronic and atomic structures relevant to hydrogen storage and device applications. Cn_nHn_n's are estimated to be stable up to the radius of a (8,8) nanotube, with binding energies proportional to 1/R. Attaching a single hydrogen to any nanotube is always exothermic. Hydrogenation of zigzag nanotubes is found to be more likely than armchair nanotubes with similar radius. Our findings may have important implications for selective functionalization and finding a way of separating similar radius nanotubes from each other.Comment: 5 pages, 4 postscript figures, Revtex file, To be appear in Physical Review

    Coil Formation in Multishell Carbon Nanotubes: Competition between Curvature Elasticity and Interlayer Adhesion

    Full text link
    To study the shape formation process of carbon nanotubes, a string equation describing the possible existing shapes of the axis-curve of multishell carbon tubes (MCTs) is obtained in the continuum limit by minimizing the shape energy, that is the difference between the MCT energy and the energy of the carbonaceous mesophase (CM). It is shown that there exists a threshold relation of the outmost and inmost radii, that gives a parameter regime in which a straight MCT will be bent or twisted. Among the deformed shapes, the regular coiled MCTs are shown being one of the solutions of the string equation. In particular,the optimal ratio of pitch pp and radius r0r_0 for such a coil is found to be equal to 2π2\pi , which is in good agreement with recent observation of coil formation in MCTs by Zhang et al.Comment: RevTeX, no figure, 12 pages, to appear in Phys. Rev. Let
    corecore