21 research outputs found

    Some remarks on the GNS representations of topological ∗^*-algebras

    Full text link
    After an appropriate restatement of the GNS construction for topological ∗^*-algebras we prove that there exists an isomorphism among the set \cycl(A) of weakly continuous strongly cyclic ∗^*-representations of a barreled dual-separable ∗^*-algebra with unit AA, the space \hilb_A(A^*) of the Hilbert spaces that are continuously embedded in A∗A^* and are ∗^*-invariant under the dual left regular action of AA and the set of the corresponding reproducing kernels. We show that these isomorphisms are cone morphisms and we prove many interesting results that follow from this fact. We discuss how these results can be used to describe cyclic representations on more general inner product spaces.Comment: 34 pages. Minor changes. To appear in J. Math. Phys. 49 (4) Apr-0

    Some recursive formulas for Selberg-type integrals

    Full text link
    A set of recursive relations satisfied by Selberg-type integrals involving monomial symmetric polynomials are derived, generalizing previously known results. These formulas provide a well-defined algorithm for computing Selberg-Schur integrals whenever the Kostka numbers relating Schur functions and the corresponding monomial polynomials are explicitly known. We illustrate the usefulness of our results discussing some interesting examples.Comment: 11 pages. To appear in Jour. Phys.

    Coulomb integrals for the SL(2,R) WZNW model

    Full text link
    We review the Coulomb gas computation of three-point functions in the SL(2,R) WZNW model and obtain explicit expressions for generic states. These amplitudes have been computed in the past by this and other methods but the analytic continuation in the number of screening charges required by the Coulomb gas formalism had only been performed in particular cases. After showing that ghost contributions to the correlators can be generally expressed in terms of Schur polynomials we solve Aomoto integrals in the complex plane, a new set of multiple integrals of Dotsenko-Fateev type. We then make use of monodromy invariance to analytically continue the number of screening operators and prove that this procedure gives results in complete agreement with the amplitudes obtained from the bootstrap approach. We also compute a four-point function involving a spectral flow operator and we verify that it leads to the one unit spectral flow three-point function according to a prescription previously proposed in the literature. In addition, we present an alternative method to obtain spectral flow non-conserving n-point functions through well defined operators and we prove that it reproduces the exact correlators for n=3. Independence of the result on the insertion points of these operators suggests that it is possible to violate winding number conservation modifying the background charge.Comment: Improved presentation. New section on spectral flow violating correlators and computation of a four-point functio

    Constraints on the Variation of the Fine Structure Constant from Big Bang Nucleosynthesis

    Get PDF
    We put bounds on the variation of the value of the fine structure constant α\alpha, at the time of Big Bang nucleosynthesis. We study carefully all light elements up to 7^7Li. We correct a previous upper limit on ∣Δα/α∣|\Delta \alpha / \alpha| estimated from 4^4He primordial abundance and we find interesting new potential limits (depending on the value of the baryon-to-photon ratio) from 7^7Li, whose production is governed to a large extent by Coulomb barriers. The presently unclear observational situation concerning the primordial abundances preclude a better limit than |\Delta \alpha/\alpha| \lsim 2\cdot 10^{-2}, two orders of magnitude less restrictive than previous bounds. In fact, each of the (mutually exclusive) scenarios of standard Big Bang nucleosynthesis proposed, one based on a high value of the measured deuterium primordial abundance and one based on a low value, may describe some aspects of data better if a change in α\alpha of this magnitude is assumed.Comment: 21 pages, eps figures embedded using epsfig macr

    The sl_3 Selberg integral

    Get PDF
    Using an extension of the well-known evaluation symmetry, a new Cauchy-type identity for Macdonald polynomials is proved. After taking the classical limit this yields a new sl_3 generalisation of the famous Selberg integral. Closely related results obtained in this paper are an sl_3-analogue of the Askey-Habsieger-Kadell q-Selberg integral and an extension of the q-Selberg integral to a transformation between q-integrals of different dimensions.Comment: 23 page

    Nekrasov Functions and Exact Bohr-Sommerfeld Integrals

    Full text link
    In the case of SU(2), associated by the AGT relation to the 2d Liouville theory, the Seiberg-Witten prepotential is constructed from the Bohr-Sommerfeld periods of 1d sine-Gordon model. If the same construction is literally applied to monodromies of exact wave functions, the prepotential turns into the one-parametric Nekrasov prepotential F(a,\epsilon_1) with the other epsilon parameter vanishing, \epsilon_2=0, and \epsilon_1 playing the role of the Planck constant in the sine-Gordon Shroedinger equation, \hbar=\epsilon_1. This seems to be in accordance with the recent claim in arXiv:0908.4052 and poses a problem of describing the full Nekrasov function as a seemingly straightforward double-parametric quantization of sine-Gordon model. This also provides a new link between the Liouville and sine-Gordon theories.Comment: 10 page

    Brezin-Gross-Witten model as "pure gauge" limit of Selberg integrals

    Get PDF
    The AGT relation identifies the Nekrasov functions for various N=2 SUSY gauge theories with the 2d conformal blocks, which possess explicit Dotsenko-Fateev matrix model (beta-ensemble) representations the latter being polylinear combinations of Selberg integrals. The "pure gauge" limit of these matrix models is, however, a non-trivial multiscaling large-N limit, which requires a separate investigation. We show that in this pure gauge limit the Selberg integrals turn into averages in a Brezin-Gross-Witten (BGW) model. Thus, the Nekrasov function for pure SU(2) theory acquires a form very much reminiscent of the AMM decomposition formula for some model X into a pair of the BGW models. At the same time, X, which still has to be found, is the pure gauge limit of the elliptic Selberg integral. Presumably, it is again a BGW model, only in the Dijkgraaf-Vafa double cut phase.Comment: 21 page

    On "Dotsenko-Fateev" representation of the toric conformal blocks

    Full text link
    We demonstrate that the recent ansatz of arXiv:1009.5553, inspired by the original remark due to R.Dijkgraaf and C.Vafa, reproduces the toric conformal blocks in the same sense that the spherical blocks are given by the integral representation of arXiv:1001.0563 with a peculiar choice of open integration contours for screening insertions. In other words, we provide some evidence that the toric conformal blocks are reproduced by appropriate beta-ensembles not only in the large-N limit, but also at finite N. The check is explicitly performed at the first two levels for the 1-point toric functions. Generalizations to higher genera are briefly discussed.Comment: 10 page

    Non-Perturbative Topological Strings And Conformal Blocks

    Get PDF
    We give a non-perturbative completion of a class of closed topological string theories in terms of building blocks of dual open strings. In the specific case where the open string is given by a matrix model these blocks correspond to a choice of integration contour. We then apply this definition to the AGT setup where the dual matrix model has logarithmic potential and is conjecturally equivalent to Liouville conformal field theory. By studying the natural contours of these matrix integrals and their monodromy properties, we propose a precise map between topological string blocks and Liouville conformal blocks. Remarkably, this description makes use of the light-cone diagrams of closed string field theory, where the critical points of the matrix potential correspond to string interaction points.Comment: 36 page
    corecore