In the case of SU(2), associated by the AGT relation to the 2d Liouville
theory, the Seiberg-Witten prepotential is constructed from the Bohr-Sommerfeld
periods of 1d sine-Gordon model. If the same construction is literally applied
to monodromies of exact wave functions, the prepotential turns into the
one-parametric Nekrasov prepotential F(a,\epsilon_1) with the other epsilon
parameter vanishing, \epsilon_2=0, and \epsilon_1 playing the role of the
Planck constant in the sine-Gordon Shroedinger equation, \hbar=\epsilon_1. This
seems to be in accordance with the recent claim in arXiv:0908.4052 and poses a
problem of describing the full Nekrasov function as a seemingly straightforward
double-parametric quantization of sine-Gordon model. This also provides a new
link between the Liouville and sine-Gordon theories.Comment: 10 page