298 research outputs found

    Screening vs. Confinement in 1+1 Dimensions

    Full text link
    We show that, in 1+1 dimensional gauge theories, a heavy probe charge is screened by dynamical massless fermions both in the case when the source and the dynamical fermions belong to the same representation of the gauge group and, unexpectedly, in the case when the representation of the probe charge is smaller than the representation of the massless fermions. Thus, a fractionally charged heavy probe is screened by dynamical fermions of integer charge in the massless Schwinger model, and a colored probe in the fundamental representation is screened in QCD2QCD_2 with adjoint massless Majorana fermions. The screening disappears and confinement is restored as soon as the dynamical fermions are given a non-zero mass. For small masses, the string tension is given by the product of the light fermion mass and the fermion condensate with a known numerical coefficient. Parallels with 3+1 dimensional QCDQCD and supersymmetric gauge theories are discussed.Comment: 29 pages, latex, no figures. slight change in the wording on page 2, references adde

    Lipid Regulators during Atherogenesis : expression of LXR, PPAR, and SREBP mRNA in the Human Aorta

    Get PDF
    Transcription factors LXRs, PPARs, and SREBPs have been implicated in a multitude of physiological and pathological processes including atherogenesis. However, little is known about the regulation of these transcription factors at different stages of atherosclerosis progression. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to compare the contents of mRNAs in pairs intact-injured aorta fragments taken from the same donors. Only minor changes in LXR?, LXR?, PPAR?, PPAR?, SREBP1, and SREBP2 mRNA levels were found in initial lesions as compared with intact non-diseased tissue. The contents of all mRNAs but SREBP2 mRNA were found to be progressively up-regulated in fatty streaks and fibrous lipoid plaques. These changes were only partially reproduced in cultured macrophages upon lipid loading. Wave-shaped changes in abundance of correlations between given group of mRNAs and 28 atherosclerosis-related mRNA species in the course of atherogenesis were observed. The impact of specific mRNA correlations on the total correlations also significantly varied between different lesion types. The study suggests that the extent and forms of LXR/PPAR/SREBP participation in intima functions vary nonlinear in individual fashion in atherogenesis. We speculate that the observed changes in mRNAs expression and coupling reflect shifts in lipid ligands availability and cellular composition in the course of atherosclerosis progression

    Genome-wide profiling of nucleosome sensitivity and chromatin accessibility in Drosophila melanogaster

    Get PDF
    textabstractNucleosomal DNA is thought to be generally inaccessible to DNA-binding factors, such as micrococcal nuclease (MNase). Here, we digest Drosophila chromatin with high and low concentrations of MNase to reveal two distinct nucleosome types: MNasesensitive and MNase-resistant. MNase-resistant nucleosomes assemble on sequences depleted of A/T and enriched in G/C-containing dinucleotides, whereas MNase-sensitive nucleosomes form on A/Trich sequences found at transcription start and termination sites, enhancers and DNase I hypersensitive sites. Estimates of nucleosome formation energies indicate that MNase-sensitive nucleosomes tend to be less stable than MNase-resistant ones. Strikingly, a decrease in cell growth temperature of about 10?C makes MNase-sensitive nucleosomes less accessible, suggesting that observed variations in MNase sensitivity are related to either thermal fluctuations of chromatin fibers or the activity of enzymatic machinery. In the vicinity of active genes and DNase I hypersensitive sites nucleosomes are organized into periodic arrays, likely due to 'phasing' off potential barriers formed by DNA-bound factors or by nucleosomes anchored to their positions through external interactions. The latter idea is substantiated by our biophysical model of nucleosome positioning and energetics, which predicts that nucleosomes immediately downstream of transcription start sites are anchored and recapitulates nucleosome phasing at active genes significantly better than sequencedependent models

    Crystal Growth and Electronic Phase Diagram of 4\u3cem\u3ed\u3c/em\u3e-doped Na\u3csub\u3e1-\u3cem\u3eδ\u3c/em\u3e\u3c/sub\u3eFe\u3csub\u3e1-\u3cem\u3ex\u3c/em\u3e\u3c/sub\u3eRh\u3csub\u3e\u3cem\u3ex\u3c/em\u3e\u3c/sub\u3eAs in Comparison to 3\u3cem\u3ed\u3c/em\u3e-doped Na\u3csub\u3e1-\u3cem\u3eδ\u3c/em\u3e\u3c/sub\u3eFe\u3csub\u3e1-\u3cem\u3ex\u3c/em\u3e\u3c/sub\u3eCo\u3csub\u3e\u3cem\u3ex\u3c/em\u3e\u3c/sub\u3eAs

    Get PDF
    Single crystals of Na1−δFe1−xTxAs with T = Co, Rh have been grown using a self-flux technique. The crystals were thoroughly characterized by powder x-ray diffraction, magnetic susceptibility, and electronic transport with particular focus on the Rh-doped samples. Measurements of the specific heat and ARPES were conducted exemplarily for the optimally doped compositions. The spin-density wave transition (SDW) observed for samples with low Rh concentration (0≤x≤0.013) is fully suppressed in the optimally doped sample. The superconducting transition temperature (Tc) is enhanced from 10 K in Na1−δFeAs to 21 K in the optimally doped sample (x=0.019) of the Na1−δFe1−xRhxAs series and decreases for the overdoped compounds, revealing a typical shape for the superconducting part of the electronic phase diagram. Remarkably, the phase diagram is almost identical to that of Co-doped Na1−δFeAs, suggesting a generic phase diagram for both dopants

    Supporting Information: Unexpected chain of redox events in co-based Prussian blue analogues

    Get PDF
    Comprehensive characterizing information about the series of materials; crystal, composition, and hyperfine parameters of the 57Fe Mössbauer spectra of samples K2−δMn1–xCox[Fe(CN)6]; SAED and TGA patterns, HAADF-STEM images, ATR–FTIR, 57Fe Mössbauer spectra, and electrochemical galvanostatic profiles of the mentioned series of samples; calculated fit of XAS experiments; and plots of KCMF50 and KCF operando SXRD in a 10–54° 2Θ range (λ = 1.0332 Å).Peer reviewe
    • …
    corecore