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Disorder-induced coupling of Weyl nodes in WTe2
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The finite coupling between Weyl nodes due to residual disorder is investigated by magnetotransport studies
in WTe2. The anisotropic scattering of quasiparticles is evidenced from classical and quantum transport
measurements. A theoretical approach using the real band structure is developed in order to calculate the
dependence of the scattering anisotropy with the correlation length of the disorder. A comparison between theory
and experiments reveals a short correlation length in WTe2 (ξ ∼ 5 nm). This result implies a significant coupling
between Weyl nodes and other bands. Our study thus shows that a finite intercone scattering rate always exists in
weakly disordered type-II Weyl semimetals, such as WTe2, which strongly suppresses topologically nontrivial
properties.
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I. INTRODUCTION

In Weyl and Dirac semimetals, bulk gapless excitations
are described by a Dirac equation, with a linear band dis-
persion and a crossing at a band degeneracy point close to
the Fermi energy. Contrary to Dirac semimetals, for which
high-symmetry Dirac points always give pairs of Fermions
with opposite chiralities, the inversion symmetry breaking in
Weyl semimetals splits the position of band degeneracy points
in the reciprocal space into two distinct Weyl nodes. These
Weyl nodes have opposite chiralities and are protected by
the topology of the overall band structure. This gives rise
to topologically nontrivial properties such as the presence
of Fermi arcs [1,2] or a chiral anomaly [3–5]. Nevertheless,
the observation of many topologically nontrivial properties
requires a weak coupling between Weyl nodes or between the
Weyl node and some other bands [3,4].

In the type-II Weyl semimetal WTe2, the Weyl nodes are
tilted such that the Fermi energy crosses the Weyl cones on
both the electron and the hole sides [6] (see Fig. 1). Besides
the manifestation of a chiral anomaly [7,8], this implies the
presence of electron and hole pockets that touch each other
when the Fermi energy is at the Weyl node. As electrons
and holes are almost perfectly compensated in WTe2, this
results in the giant magnetoresistance reported in high-quality
crystals [9]. Recently, monolayers or few-layer thin films of
WTe2 attracted attention with the discovery of the quantum
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spin Hall effect [10–17], the evidence of superconductivity
[18–20], and the measurement of a nonlinear Hall effect
[21,22]. Although the disorder in WTe2 plays a key role in the
observation of many trivial and nontrivial transport properties
and despite some theoretical work [23–28], a quantitative and
experimental study of the disorder in WTe2 is still lacking.

In this work, we investigate the magnetotransport proper-
ties of a WTe2 nanoflake and, we determine the correlation
length ξ of disorder, which determines the long- or short-
range nature of the disorder as well as the coupling between
the Weyl nodes. A comparison with a theoretical model
that considers scattering processes within the specific band
structure of WTe2, using a renormalization method, allows
us to infer a rather short ξ (∼5 nm) of the disorder. This
disorder leads to a finite coupling between Weyl nodes that
can suppress the transport properties related to the topology
of the band structure.

In real materials, a particle can be scattered from a Weyl
cone to another band due to the presence of impurities. This
effect is related to the strength of the disorder (δV in Fig. 1)
and to 1/ξ , which defines the range of the scattering in
reciprocal space. In a single-band model with a Fermi wave
vector k, the short-range disorder limit is defined by kξ � 1.
Scattering is isotropic, i.e., an initial state can be scattered all
over the band and the angle θq between initial (k) and final
(k − q) states is uniformly distributed between 0 and 2π . On
the other hand, in the long-range disorder limit corresponding
to kξ � 1, the disorder only couples states close to each
other in reciprocal space and θq is limited to small values
(anisotropic scattering) [29]. Similarly, in the multiband case,
when considering the distance δk between an initial state
and some other bands (see Fig. 1), the inequality δkξ � 1
sets the limit where interband scattering becomes signifi-
cant. Particularly, for δkWξ � 1 with δkW being the distance
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FIG. 1. Illustration of the band structure of WTe2 with the Weyl
nodes indicated by the two arrows. The spin degeneracies of the
conduction and valence bands are lifted by the spin-orbit coupling,
leading to two bands slightly shifted in energy (plain and dashed
lines). The Fermi energy EF and the related effective Fermi wave
vector k‖ as defined in Eq. (3) are indicated for perfect compensation
(n = p), giving rise to two spin nondegenerate electron and hole
pockets contributing to the transport. An illustration of the disorder
potential induced by impurities is given with a graphic definition of
its amplitude δV and its correlation length ξ .

between two Weyl nodes, disorder induces a finite relaxation
rate between two Weyl cones of opposite chirality, preventing
the measurement of a topologically nontrivial effect. Thus,
the correlation length ξ appears to be a key parameter for the
observation of topologically nontrivial properties in Weyl (or
Dirac) semimetals.

In order to measure ξ , we investigated the quantum
transport properties of WTe2 at very low temperature (T �
100 mK) and under magnetic field (B < 6 T). In order to
increase the signal-to-noise ratio of our measurements, we
measured a thin flake of WTe2 with similar charge densities
and mobilities than what is measured in macroscopic crystals
from similar growths. A careful study of the Shubnikov–de
Haas oscillations allows us to determine both the quantum
lifetime τ ′

Q of holes (the ′ notation refers to holes timescales
and mobility) and an effective Fermi wave vector k‖ of all
charge pockets. Additionally, the transport times of electrons
(τtr) and holes (τ ′

tr) can be obtained from longitudinal and Hall
magnetoresistances measurements. Far from the top of the
valence bands, our calculations show that the ratio τ ′

tr/τ
′
Q does

not depend on the strength of the disorder and is a function of
k‖ and ξ solely. Our theoretical approach based on a material
specific band structure (including the spin texture) establishes
the correspondence between τ ′

tr/τ
′
Q, k‖ for holes and ξ in a

disordered material and, gives a quantitative estimation of ξ .

II. TWO-BAND MODEL AND TRANSPORT PARAMETERS

Bulk single crystals of WTe2 were grown by Te flux
method and were characterized by SEM\EDX mode for
compositional analysis and with x-ray diffraction for struc-
tural analysis. A WTe2 flake (about 30 μm × 50 μm ×

FIG. 2. Antisymmetrized magnetoresistance (a) of transverse
contacts and symmetrized relative resistance (b) measured up to
±6 T for longitudinal contacts. The black solid lines are the experi-
mental data and the blue dashed lines are the fit to the noncompen-
sated two-band model. The current and voltage contact configuration
are indicated in the pictures.

70 nm) was directly exfoliated onto a Si/SiOx sub-
strate and contacted by standard electron beam lithog-
raphy and a metal lift-off process. Good ohmic con-
tacts were obtained after in situ ion beam etching prior
to the electron beam evaporation of Cr (10 nm)/Au
(100 nm) (see Fig. 2).

When cooled down, the resistance decreases with a resid-
ual resistance ratio R300K/R4K ∼ 80, indicating a quality of
our nanostructure comparable to what was reported so far in
macroscopic crystals or in thin nanostructures [30–32]. At
low temperature, a longitudinal magnetoresistance δR/R =
[R(B) − R(0)]/R(0) exceeding 6000% at B = 6 T is measured
(Fig. 2). Hence, a tiny misalignement of Hall voltage probes
results in a strong symmetric magnetoresistance which is not
related to the antisymmetric Hall voltage. In order to make a
correct analysis, we therefore systematically symmetrized the
longitudinal resistances and antisymmetrized the transverse
Hall resistances.

As shown in Fig. 2 both the longitudinal and the Hall resis-
tivities can be described very well by the two-band model:

ρxx = 1

e

nμ + pμ′ + (pμ + nμ′)μμ′B2

(nμ + pμ′)2 + (p − n)2μ2μ′2B2
, (1)

ρxy = B

e

pμ′2 − nμ2 + (p − n)μ2μ′2B2

(nμ + pμ′)2 + (p − n)2μ2μ′2B2
, (2)
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with n and p being the respective charge densities of electrons
and holes and μ and μ′ their respective mobilities. The
experimental results presented in Fig. 2 slightly depend on the
contacts used, which leads to a dispersion of about ±10% in
the measurements (see Appendix A). The Hall signal strongly
deviates from the linear dependence that is expected in a
fully compensated two-band model (δn = n − p = 0). This
is indeed expected from band calculations, which predict the
presence of four bands at full compensation, meaning two
electron and two hole pockets. We note that the strong spin-
orbit coupling lifts the spin-degeneracy of the different charge
pockets that are nevertheless twice valley degenerated. There-
fore, a departure from the fully compensated two-band model
is anticipated by the theory. Still, the very good agreement
with the noncompensated two-band model with |δn| � n
points to transport properties dominated by two effective
bands with an almost perfect compensation between electrons
and holes. In this approximation, the two spin nondegenerate
electron (hole) pockets are considered as one electron (hole)
single spin and valley-degenerated pocket.

The exact configuration of the current lines is not known
in our nanostructure which prevents the use of geometrical
parameters to fit the data with Eq. (1). To overcome this
difficulty, we fit δR/R(B) = δρ/ρ(B) instead of R(B). More-
over, due to the almost complete compensation of charges
(|δn|/n � 1), the term proportional to δn2 in Eqs. (1) and
(2) becomes too small to be reliably fitted. As a result, the
fit of the magnetoresistances with Eqs. (1) and (2) allows
us to determine three free parameters of four unknown pa-
rameters (n, p, μ, and μ′). Therefore, the electron density
is determined by the measurement of Shubnikov–de Haas
oscillations as we will see below and we thus obtain n =
3.01 × 1019 cm−3. The fit of the magnetotransport data leads
to p = (3.05 ± 0.3) × 1019 cm−3, μ = 1.9 ± 0.1 m2/(Vs),
and μ′ = 1.1 ± 0.1 m2/(Vs). We can also estimate the value
of the transport time using the effective mass m∗ measured
below: τ ′

tr = m∗μ′/e � 2.5 ± 0.3 ps.
As a simple check from the transport parameters obtained,

we can infer an effective electrical width W that indicates
the spread of the current lines between the source and the
drain and compare it to the typical size of the flake in the a-b
plane. We have W/L = [tR × (eμtrn + eμ′

tr p)]−1, where L is
the source-drain distance, t is the thickness of the flake, and
R is the resistance at zero magnetic field. For L = 30 μm, we
obtain W = 29 μm, a value that compares very well to the
dimension of our flake.

III. QUANTUM LIFETIME

We focus now on the Shubnikov–de Haas oscillations mea-
sured down to T � 100 mK [Fig. 3(a)]. The Fourier transform
of the quantum oscillations reveals four sharp peaks [see
Fig. 3(b)] as expected from the band-structure calculations
[6,9,33] and as already observed experimentally [33,34]. It is
straightforward to assign each peak to a given charge pocket
by comparing our results with the theoretical expectations:
The first ( fh1 = 87 T) and last ( fh2 = 168 T) peaks correspond
to the two hole pockets, whereas the two other peaks at
fe1 = 122 T and fe2 = 135 T are due to the contributions
of the two electron pockets. Those values are in very good

FIG. 3. (a) Shubnikov–de Haas oscillations without background
measured in the longitudinal resistance at T = 100 mK and up to
6 T. (b) The amplitude of the Fourier coefficient of the quantum
oscillations using a Blackman window. (c) The effective mass for the
different extrema observed in δR that leads to m∗ � (0.40 ± 0.03) ×
me. (d) The Dingle plot of the quantum oscillations close to their
onset. The blue dashed line indicates the best fit of the Dingle plot.

agreement with some previous work [33–36] as well as with
our band-structure calculation (see Table I).

The frequencies of the quantum oscillations f are related
to the cross section of the Fermi surfaces Ak in the k‖ plane by
the Onsager relation,

f = h

4π2e
Ak = h

4πe
k‖2, (3)

where k‖ is the value of an effective in-plane Fermi wave
vector assuming an isotropic in-plane band structure. In order
to calculate the charge density associated to a given pocket,
the value of the out-of-plane Fermi wave vector k⊥ is also
required. Assuming an ellipsoidal pocket, the volume of the
pocket is given by 4πk2

‖k⊥/3 and the associated charge den-
sity per spin by k2

‖k⊥/6π2. No Shubnikov–de Haas oscilla-
tions were measured for an in-plane magnetic field, making
the determination of k⊥ impossible. Therefore, we determine
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TABLE I. FFT frequencies of the different peaks, experimental values of k‖ [from Eq. (3)], theoretical values of k‖ (from the band structure,
fixing the value of h1 to its experimental value), k⊥ from the band calculation, densities calculated for the different charge pocket without any
valley degeneracy, total charge density from the FFT (with valley degeneracy), total charge density from the two-band model (n is fixed to its
FFT value), and transport mobility from the two-band model.

k‖ k‖ k⊥ n ntot ntot

FFT expt. theory theory per pocket from FFT two-band model μ

T (nm−1) (nm−1) (nm−1) ×1018 (cm−3) ×1018 (cm−3) ×1018 (cm−3) (m2.V−1.s−1)

h1 or h 87 0.51 0.51 (from exp.) 1.08 4.82 30.0 30.5 1.14
e1 or e 122 0.61 0.59 1.14 7.13 30.1 30.1 (from FFT) 1.86
e2 135 0.64 0.66 1.14 7.89 – – –
h2 168 0.72 0.71 1.18 10.17 – – –

the value of k⊥ for the different pockets from the band
structure.

To do so, we first set the position of the Fermi energy such
that the value of Ak for the small hole pocket corresponds
to the experimental value given by fh1 in the fast-Fourier
transform (FFT). We calculate then Ak for the three other
pockets (e1, e2, and h2) from the band structure and compare
the calculated k‖ with the experimental value given by fe1, fe2,
and fh2. The excellent agreement between experiments and
theory (see Table I) validates our band-structure calculation
and the exact position of the Fermi energy. We note that
this position slightly differs from the one calculated for an
undoped band structure, suggesting an intrinsic doping of
the crystal. Finally, taking the value of k⊥, from the band-
structure calculation, we determine the charge density in a
simple ellipsoidal approximation of the Fermi surfaces. Such
an approximation is accurate within less than 1% by com-
parison with a numerical approach that consists in counting
the number of state present in the Fermi surfaces in the band
structure. The electron density n (from the FFT) is calculated
by adding the contribution of the spin-degenerated e1 and
e2 pockets, taking into account their valley degeneracy and
we found n = 2ne1 + 2ne2 = (3.01 ± 0.03) × 1019 cm−3. We
follow the same procedure to determine the hole density p
(from the FFT) of the h1 and h2 pockets. We have p =
2ph1 + 2ph2 = (3.00 ± 0.03) × 1019 cm−3. The value of p is
consistent with the one obtained from the two-band model
fit (fixing n to the FFT value) that gives p = (3.05 ± 0.3) ×
1019 cm−3 as already mentioned in Sec. II. As shown in
Table I, the almost perfect compensation confirms a posteriori
the nonreliability of the term proportional to δn2 in the fit of
the two-band model (δn � n) and the necessity of fixing the
value of n by independent measurement.

Close to their onset (�1 T), the quantum oscillations
exhibit a single frequency f in 1/B with f = fh1, corre-
sponding to a Fermi wave vector k‖ � 0.51 ± 0.01 nm−1.
These oscillations can clearly be assigned to the smallest
hole pocket. The temperature dependence indicates a field-
independent effective mass m∗ � (0.40 ± 0.03) × me, where
me is the free electron mass [see Appendix B and Fig. 3(c)]. A
fit of the extrema with a Dingle plot gives a quantum lifetime
τ ′

Q ∼ 0.50 ± 0.08 ps [Fig. 3(d)]. The contribution of different
pockets at higher fields does not allow us to determine the
effective mass or the quantum lifetime for the other pockets.

We determine the ratio τ ′
tr/τ

′
Q for holes and find τ ′

tr/τ
′
Q � 5.

This ratio depends on the value of kξ and is therefore a

measure for the anisotropy of the scattering. A large ratio
stands for a large anisotropy and long-range disorder, whereas
a ratio close to 1 indicates an isotropic scattering and a short-
range disorder. Theoretically, such a ratio can be much larger
than 1 in topologically trivial materials like two-dimensional
electron gases [29], graphene [37], or in topological insulators
[38], for instance. This emphasizes that this property is not
related to any topological property of the band structure but
rather to the long-range nature of the disorder only (kξ � 1).
Experimentally, a very large ratio (to 60) was already mea-
sured in two-dimensional electron gases [39–41]. Such a large
ratio is specific to the case of heterostructures where the
disorder is located far from the metallic interface, therefore
resulting in a very long-range disorder. In graphene, the ratio
remains below 2 [42], whereas it can reach 8 in disordered
three-dimensional (3D) topological insulators [43]. In WTe2,
the values reported so far are between 1 and 2 for similar
nanostructures [31,32], significantly smaller than the value
reported in the present work.

IV. THEORETICAL MODEL

In order to extract the correlation length ξ of the disorder,
it is necessary to compare the experimental ratio τ ′

tr/τ
′
Q with

the corresponding value calculated from an appropriate the-
oretical model. We developed therefore the realistic theoret-
ical approach based on a material’s specific band structure,
including the spin texture, and a quantitative treatment of
the disorder scattering. To achieve our aim, we applied the
projective renormalization method (PRM) [44] usually used
for many-particle systems to a realistic Hamiltonian of WTe2

with a static disorder. The method will be presented in more
detail in a further work and we describe it briefly below.

We first consider the minimal case of WTe2 in the presence
of disorder V where two bands interact with each other
within the nodal energy crossings in the Brillouin zone. The
corresponding Hamiltonian reads

H =
∑

k,α,β

c†
k,α [Ĥk]α,β ck,β

+
∑

k,k′,α,β

(c†
k,α[V̂k,k′]α,βck′,β + H.c.). (4)

The operator c†
k,α creates an electron with momentum k

and spin α, i.e., α = {↑,↓} and the two-band Hamiltonian
can easily be generalized to more bands by simply adding

033041-4



DISORDER-INDUCED COUPLING OF WEYL NODES IN … PHYSICAL REVIEW RESEARCH 2, 033041 (2020)

additional band indices. For a Weyl semimetal, there exists
at least one pair of points in the Brillouin zone where the
2 × 2 matrix Ĥk becomes linear in momentum. The scattering
by the disorder is described by the V term that relates an
initial state (k, α) to a final state (k′, β ). We take a Gaussian
disorder [45] entirely characterized by the Fourier transform
of its correlation function,

[V̂k,k′]α,β = Ve−2ξ 2|k−k′|2δα,β, (5)

where V stands for the strength of the disorder and ξ stands
for its correlation length.

In our method, the nondiagonal Hamiltonian H is first
decomposed into a diagonal part H0 and a nondiagonal part
H1, i.e., H = H0 + H1. For this, we introduce new fermionic
operators ak,α = ∑

β[D̂k]α,βck,β , where the matrix D̂k is de-
fined such that the first term in Eq. (4) becomes diagonal:

H = H0 + H1

=
∑

k,α

Ek,α a†
k,α

ak,α

+
∑

k,k′,α,β

(
a†

k,α

[
D̂kV̂k,k′D̂−1

k′
]
α,β

ak′,β + H.c.
)
. (6)

All information about the spin-texture band structure is now
contained in the matrix D̂. The decomposition (6) of the
Hamiltonian allows the application of the PRM to integrate
out the scattering term using unitary transformations and to
write H as the effective diagonal Hamiltonian H̃ of free
fermions with renormalized bands:

H̃ = eXHe−X =
∑

k,α

Ẽk,α ã†
k,α ãk,α (7)

with X † = −X . Since H̃ is connected to the original Hamil-
tonian H through a unitary transformation, it has the same
eigenvalues as H [46] and allows access to any quantity of the
system.

The parameters Ẽk,α are connected to the initial
band structure Ek,α and initial scattering matrix elements
V̂ a

k,k′ = D̂kV̂k,k′D̂−1
k′ through renormalization equations which

are derived analytically within the scheme illustrated in
Refs. [44,47]. The renormalization equations are solved nu-
merically on a 3D grid of 20 × 20 × 20 k points taking as
starting values the realistic band structure of WTe2 from
Refs. [48,49] with a disorder described by a momentum
distribution according to Eq. (5).

The numerical solution of the renormalization equation
allows us to calculate the momentum-dependent transport and
quantum lifetimes given by Fermi’s golden rule,

1

τQ(k)
= 2π

h̄

∑

α,β,k′

∣∣〈a†
k,α

[
V̂ a

k,k′
]
α,β

ak′,β
〉∣∣2

δ(Ẽk,α − Ẽk′,β ),

(8)

1

τtr(k)
= 2π

h̄

∑

α,β,k′

∣∣〈a†
k,α

[
V̂ a

k,k′
]
α,β

ak′,β
〉∣∣2

× (1 − cos θq)δ(Ẽk,α − Ẽk′,β ), (9)

with q = k − k′ and θq the angle between k and k′. The scat-
tering expectation values 〈a†

k,αak′,β〉 = 〈ã†
k,α ãk′,β〉 are calcu-

FIG. 4. Ratio τ ′
tr/τ

′
Q calculated from the PRM where the value of

k‖ is fixed and the result is shown as a function of the correlation
length ξ . The results for the experimental values k‖ = 0.5 nm−1

obtained from the quantum oscillation measurements is shown in
red together with the results corresponding to k‖ = 0.4 nm−1 (black)
and k‖ = 0.6 nm−1 (blue). The dashed green line indicates the
experimental value for τ ′

tr/τ
′
Q.

lated within the PRM using the same unitary transformation as
for the renormalization of the Hamiltonian ã†

k,α = eX a†
k,αe−X .

Using the described approach we have evaluated numeri-
cally the expressions (8) and (9) for fixed k = kxex and T = 0,
where the value of kx corresponds to a given k‖ as defined in
Eq. (3). We present here the results obtained for k belonging to
a hole Fermi pocket but our conclusions are not significantly
changed if k belongs to an electron Fermi pocket. We also
considered k to be directed in the other directions ey and ez

but, again, the conclusions from numerical results were not
affected. Finally, we chose for the strength of the disorder
V = 5 meV. Nevertheless, the ratio τ ′

tr/τ
′
Q depends on V only

for small k‖. Hence, the ratio calculated for V = 5 meV and
V = 50 meV is the same as long as k‖ � 0.35 nm−1, so that
for the experimental value measured (k‖ = 0.5 nm−1), the
value of V has no influence on our conclusions.

In Fig. 4, we plot the calculated ratio τ ′
tr/τ

′
Q as a function

of ξ , where k‖ is defined as in Eq. (3). In the low-ξ limit,
the short-range disorder couples a state to all available states
of the different Fermi pockets. Hence, the situation is almost
equivalent to an isotropic scattering in spin-degenerated bands
and the ratio τ ′

tr/τ
′
Q ∼ 1 as expected. In the opposite limit, for

large ξ , the long-range disorder induces a strong anisotropic
scattering and τ ′

tr/τ
′
Q rises significantly. The limit between the

two regimes is given by k‖ξ ∼ 1.

V. DISCUSSION AND CONCLUSION

The comparison of the calculated ratio for k‖ = 0.5 nm−1

with the experimental value we measured gives ξ � 5 nm. The
value of k‖ξ � 2.5 rules out a disorder dominated by pointlike
impurities, for which k‖ξ → 0, and suggests a long-range
disorder dominated by screened charged impurities [38]. We
stress that the dependence of the measurements on the con-
tacts geometry can lead to an error in the determination of the
ratio τ ′

tr/τ
′
Q of about ±5%. Nevertheless, the weak dependence

of ξ on this ratio for τ ′
tr/τ

′
Q � 5 implies that such an error only
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weakly changes the final value of ξ (a few percentages, see
Appendix C).

We note here that ξ is measured at a Fermi energy which is
about 50 meV below the Weyl nodes. Moving the position
of the Fermi energy changes both the size of electron and
hole pockets in an opposite way such that the total charge
density (electron and hole) should not change significantly
at the Weyl nodes. Therefore, any change in the position of
the Fermi level should not substantially modify the screening
properties of charged impurities by the Fermi seas, so that the
energy dependence of both the amplitude of the potential and
the correlation length of the disorder is expected to be rather
weak.

A relevant value of the distance between a Weyl node
and some other band in reciprocal space is given by δkW.
This quantity has been calculated in some previous works
[6,8,50,51] and values were found between 0 and 0.32 nm−1.
According to the value of ξ we measured, we have δkξ ∼ 1,
implying a substantial coupling between a Weyl node and
some other band that strongly reduces the signature of topo-
logical properties. A larger value of δkξ in WTe2 would
exponentially enhance the amplitude of the measured chiral
anomaly [7,8], a property only limited by the intervalley
scattering time.

Qualitatively, the value we extract for ξ might not be
restricted to the case of WTe2 but could be generalized to any
topological material with similar charge density and disorder.
It highlights the necessity to enhance the crystal quality
or to increase the distance in the reciprocal space between
Weyl nodes to measure topologically nontrivial properties.
This might be achieved in WTe2 by substituing the Tungsten
atoms by Molybdenum atoms in the crystal structure, giving
W1−xMoxTe2 [50].

In conclusion, we studied the transport properties of an
exfoliated flake of WTe2 and measured the anisotropy of
the scattering of electrons. We developed a new theoretical
method taking into account the real band structure of WTe2

with the aim of comparing our experimental data with the nu-
merical simulations and we determine the correlation length
of the disorder ξ ∼ 5 nm. This value points to a significant
coupling between the Weyl nodes and other bands, leading
to a strong reduction of topological properties. Our results
stress the importance of band-structure engineering of Weyl
semimetals to enhance the distance δkW between the Weyl
nodes in order to investigate topological properties.
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APPENDIX A: CONTACT DEPENDENCE OF
THE TRANSPORT PROPERTIES

In order to measure the contact dependence of the mag-
netoresistance and the anisotropy, we measured the longitu-
dinal and Hall magnetoresistance in different configurations
at a magnetic field up to 2 T. We measured 25 different
configurations for the longitudinal magnetoresistance and 10
configurations for the Hall magnetoresistance in total. The
results are shown in the Fig. 5 where the color of the different
traces corresponds to the main orientation of the current lines
(the θ angle between the reference axis in Fig. 5 and the
source-drain axis). The discrepancies in the measurements
are responsible for a dispersion of the experimental results of
about ±10%. Nevertheless, no systematic θ dependence could
be evidenced so that no anisotropy could be revealed.

APPENDIX B: DETERMINATION OF
THE EFFECTIVE MASS

In order to determine the effective mass, we used the
Lifshitz-Kosevich formulas [52]


Rn(T )


Rn(T0)
= T

T0

sinh [(2π2kBm∗T0)/(h̄eBn)]

sinh [
(
2π2kBm∗T

)
/(h̄eBn)]

, (B1)

where we chose T0 = 300 mK and Bn to be the position
of the different extrema in magnetic field. We restrict the
study to a magnetic field where only a single frequency was

FIG. 5. Antisymmetrized magnetoresistance and symmetrized
relative resistance to ±2 T for different orientations θ of the current
and for different voltage probes and at different temperature between
T = 4 K and T = 100 mK (no significant temperature dependence
could be measured at low temperature). The θ values range between
−65◦ and 87◦ which is indicated by the change from blue to red. The
gray zone roughly indicates where at least 80% of the measurements
can be found with a dispersion of about ±10%. A picture of the
sample is shown in the inset of the right panel.
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FIG. 6. Determination of the effective mass m∗ with the Lifshitz-
Kosevich formulas at Bn = 1.69 T (up) and Bn = 1.28 T. The points
are the values of the extrema and the red lines are the fits with the
theoretical formulas.

clearly observed (1T < B < 2T) and we show in Fig. 6 two
examples of such a thermal dependence close to the onset of
the Shubnikov–de Haas oscillations (Bn = 1.28 T) and at a
higher field (Bn = 1.69 T). The amplitude of the Shubnikov–
de Haas oscillations being typically of about 1‰ of the signal
at very low temperature, the noise in the measurement is
relatively high, which leads to a relatively large error bar but
the effective mass is found to be B independent [see Fig. 3(c)].
In order to reduce this error bar, we average m∗ over all the

FIG. 7. Plot of the ratio of relative errors in ξ and r as a function
of r in a logarithmic scale. No k‖ dependence could be observed.

extrema. This results in m∗ � (0.40 ± 0.03) × me, where me

is the free electron mass.

APPENDIX C: ERROR BAR IN THE
DETERMINATION OF ξ

As mentioned above, any error 
r in the measurement of
the ratio r = τ ′

tr/τ
′
Q induces an error 
ξ in the determination

of ξ . As long as the errors remain reasonable, the ratio
between the two relative errors is given by


ξ/ξ


r/r
= dξ

dr

r

ξ
. (C1)

This ratio of the two errors can be calculated from the data
presented in Fig. 4 and we plot the result as a function of the
τ ′

tr/τ
′
Q ratio in Fig. 7. Interestingly, we note that the result is a

function of r but it does not depend on k‖. Most importantly,
one sees that for r > 1.5, the relative error induced in ξ will
be smaller than the one of r. Close to r = 5, the experimental
value we measure, the relative error in ξ is even four times
smaller than the one in r, which significantly enhances the
accuracy of our measurement of ξ .
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