20 research outputs found

    Artificial Neural Network for Prediction of Seat-to-Head Frequency Response Function During Whole Body Vibrations in the Fore-and-Aft Direction

    Get PDF
    Vibrations while driving, regardless of their intensity and shape, have the most obvious effect of reducing driving comfort. Seat-to-head frequency response function (STHT) is a complex relationship resulting from the movement of the head due to the action of excitation on the seat in the form of vibrations in the seat/head interface. In this research, an artificial neural network model was developed, which aims to simulate the STHT function through the body of the subjects based on the data obtained experimentally. The experiments were conducted with twenty healthy male volunteers, who were exposed to single-axis fore-and-aft random broadband vibration. All the results of the experiment were recorded on the basis of which the artificial neural network (ANN) was trained. The developed ANN model has the ability to predict STHT values in the range of trained values both when changing the anthropometric measures of the subjects and changes in the input characteristics of vibrations. The mathematical models based on recurrent neural networks (RNN) used in this paper show with high accuracy STHT values in case there exists prior information about the anthropometric measures of the subjects and the input characteristics of vibrations. The results show that the expensive real-time simulations could be avoided by using reliable neural network models

    Computational modeling of shear forces and experimental validation of endothelial cell responses in an orbital well shaker system

    Get PDF
    Vascular endothelial cells are continuously exposed to hemodynamic shear stress. Intensity and type of shear stress are highly relevant to vascular physiology and pathology. Here, we modeled shear stress distribution in a tissue culture well (R = 17.5 mm, fill volume 2 ml) under orbital translation using computational fluid dynamics with the finite element method. Free surface distribution, wall shear stress, inclination angle, drag force, and oscillatory index on the bottom surface were modeled. Obtained results predict nonuniform shear stress distribution during cycle, with higher oscillatory shear index, higher drag force values, higher circular component, and larger inclination angle of the shear stress at the periphery of the well compared with the center of the well. The oscillatory index, inclination angle, and drag force are new quantitative parameters modeled in this system, which provide a better understanding of the hydrodynamic conditions experienced and reflect the pulsatile character of blood flow in vivo. Validation experiments revealed that endothelial cells at the well periphery aligned under flow and increased Kruppel-like Factor 4 (KLF-4), cyclooxygenase-2 (COX-2) expression and endothelial nitric oxide synthase (eNOS) phosphorylation. In contrast, endothelial cells at the center of the well did not show clear directional alignment, did not induce the expression of KLF-4 and COX-2 nor increased eNOS phosphorylation. In conclusion, this improved computational modeling predicts that the orbital shaker model generates different hydrodynamic conditions at the periphery versus the center of the well eliciting divergent endothelial cell responses. The possibility of generating different hydrodynamic conditions in the same well makes this model highly attractive to study responses of distinct regions of the same endothelial monolayer to different types of shear stresses thereby better reflecting in vivo conditions

    Computer simulation of three-dimensional plaque formation and progression in the carotid artery

    Get PDF
    Atherosclerosis is becoming the number one cause of death worldwide. In this study, three-dimensional computer model of plaque formation and development for human carotid artery is developed. The three-dimensional blood flow is described by the Navier-Stokes equation, together with the continuity equation. Mass transfer within the blood lumen and through the arterial wall is coupled with the blood flow and is modeled by a convection-diffusion equation. The low-density lipoproteins transports in lumen of the vessel and through the vessel tissue are coupled by Kedem-Katchalsky equations. The inflammatory process is modeled using three additional reaction-diffusion partial differential equations. Fluid-structure interaction is used to estimate effective wall stress analysis. Plaque growth functions for volume progression are correlated with shear stress and effective wall stress distribution. We choose two specific patients from MRI study with significant plaque progression

    Modeling the Behavior of Red Blood Cells within the Caudal Vein Plexus of Zebrafish.

    Get PDF
    Due to the important biological role of red blood cells (RBCs) in vertebrates, the analysis of reshaping and dynamics of RBCs motion is a critical issue in physiology and biomechanics. In this paper the behavior of RBCs within the immature capillary plexus during embryonic development of zebrafish has been analyzed. Relying on the fact that zebrafish embryos are small and optically transparent, it is possible to image the blood flow. In this way the anatomy of blood vessels is monitored along with the circulation throughout their development. Numerical simulations were performed using a specific numerical model that combines fluid flow simulation, modeling of the interaction of individual RBCs immersed in blood plasma with the surrounding fluid and modeling the deformation of individual cells. The results of numerical simulations are in accordance with the in vivo observed region of interest within the caudal vein plexus of the zebrafish embryo. Good agreement of results demonstrates the capabilities of the developed numerical model to predict and analyze the motion and deformation of RBCs in complex geometries. The proposed model (methodology) will help to elucidate different rheological and hematological related pathologies and finally to design better treatment strategies

    Three-dimensional biomechanical model of benign paroxysmal positional vertigo in the semi-circular canal

    Get PDF
    Benigna paroksizmalna pozicijska vrtoglavica (BPPV) je najčešći poremećaj vestibularnog sustava koji uzrokuju bazofilne čestice u polukružnom kanalu. Trodimenzijski biomehanički model SCC je opisan s potpunom 3D interakcijom fluid-struktura, čestica, zidova, deformacije kupule i endolimfnog strujanja fluida. Prikazan je model SCC s parametarskim definiranim dimenzijama i trodimenzijskim 3D rekonstrukcijama određenog pacijenta. Korištene su pune Navier-Stokes jednadžbe s jednadžbama kontinuiteta opisuje tok fluida dok je Arbitrary-Lagrangian Eulerian (ALE) formulacija korištena za gibanje mreže. Korištena je interakcija fluid-struktura za spajanje tekućine s deformacijom kupule. Primijenjen je algoritam za praćenje čestica. Korištene su različite veličine i broj čestica sa svojom punom interakcijom između sebe, zida i deformacije kupule. Raspodjela brzina, smičnog naprezanja i sila od strane endolimfe je prikazana kao parametar za jedan SCC kao i za tri SCC od određenog pacijenta. Svi modeli se koriste u korelaciji s istim eksperimentalnim protokolima s pokretima glave i gibanjem očiju - nystagmus. Puna interakcija fluid-struktura, čestica otoconia, zidova, deformacije kupula i endolimfnog fluida u tri dimenzije dat će više detalja za razumijevanje patologije specifičnog pacijenta u standardnoj kliničkoj dijagnostici i proceduri terapije za BPPV.Benign Paroxysmal Positional Vertigo (BPPV) is one of the most common vestibular disorders occuring due to the presence of basophilic particles in the semicircular canals (SCC). Three-dimensional biomechanical model of the SCC is described with full 3D fluid-structure interaction of particles, wall, cupula deformation and endolymph fluid flow. The model of the SCC with parametric defined dimension and fully 3D three SCC from patient specific 3D reconstruction is presented. Navier-Stokes equations with continuity equations described fluid flow while Arbitrary-Lagrangian Eulerian (ALE) formulation is used for mesh motion. Fluid-structure interaction for fluid coupling with cupula deformation is used. Particle tracking algorithm has been used for particle motion. Different size and number of particles with their full interaction between themselves, wall and cupula deformation are used. Velocity distribution, shear stress and force from endolymph side are presented for parametric one SCC and patient specific three SCC. All the models are used for correlation with the same experimental protocols with head moving and nystagmus eye tracking. Full fluid-structure interaction of otoconia particles, wall, cupula deflection and endolymph flow in three-dimension give more details and understanding of the pathology of the specific patient in standard clinical diagnostic and therapy procedure for BPPV

    Trauma of the frontal region is influenced by the volume of frontal sinuses. A finite element study

    Get PDF
    Anatomy of frontal sinuses varies individually, from differences in volume and shape to a rare case when the sinuses are absent. However, there are scarce data related to influence of these variations on impact generated fracture pattern. Therefore, the aim of this study was to analyse the influence of frontal sinus volume on the stress distribution and fracture pattern in the frontal region. The study included four representative Finite Element models of the skull. Reference model was built on the basis of computed tomography scans of a human head with normally developed frontal sinuses. By modifying the reference model, three additional models were generated: a model without sinuses, with hypoplasic, and with hyperplasic sinuses. A 7.7 kN force was applied perpendicularly to the forehead of each model, in order to simulate a frontal impact. The results demonstrated that the distribution of impact stress in frontal region depends on the frontal sinus volume. The anterior sinus wall showed the highest fragility in case with hyperplasic sinuses, whereas posterior wall/inner plate showed more fragility in cases with hypoplasic and undeveloped sinuses. Well-developed frontal sinuses might, through absorption of the impact energy by anterior wall, protect the posterior wall and intracranial contents.This work was supported in part by grants from the Serbian Ministry of Education, Science and Technological Development III45005, III41007, ON174028 and EU project FP7 ICT SIFEM 600933

    Thermal analysis of solid and vented disc brake during the braking process

    No full text
    Braking system is one of the most important components of a vehicle on the road. This system has the task to bring the vehicle to stop or slow down. Friction brakes, during the braking process, convert the kinetic and potential energy into the thermal energy (heat). The basic components of braking systems, brake discs and brake pads, in a short period of time absorb a large amount of heat release (Travaglia et al. 2014). The absorbed heat must be, as far as possible, effectively dissipated in order to ensure the normal operation of the braking system (Day et al. 1984). High temperature during the braking process may cause many problems such as thermal cracks, premature wear, brake fade and thermally-excited vibration (Lee 1999). In this study, a typical disc brake system was modeled including brake disc and pads. Using COMSOL Multiphysics 5.0, we investigated thermal behavior of two types of discs - solid and vented dics. The results show that the vented disc is a much better solution than the solid disc, because the greater amount of heat is released for the same amount of time

    Modeling the behavior of red blood cells within the caudal vein plexus of zebrafish

    No full text
    Due to the important biological role of red blood cells (RBCs) in vertebrates, the analysis of reshaping and dynamics of RBCs motion is a critical issue in physiology and biomechanics. In this paper the behavior of RBCs within the immature capillary plexus during embryonic development of zebrafish has been analyzed. Relying on the fact that zebrafish embryos are small and optically transparent, it is possible to image the blood flow.. In this way the anatomy of blood vessels is monitored along with the circulation throughout their development. Numerical simulations were performed using a specific numerical model that combines fluid flow simulation, modeling of interaction of individual red blood cells immersed in blood plasma with the surrounding fluid and modeling the deformation of individual cells. The results of numerical simulations are in accordance with the in vivo observed region of interest within the caudal vein plexus of the zebrafish embryo. Good agreement of results demonstrates the capabilities of the developed numerical model to predict and analyze the motion and deformation of RBCs in complex geometries. The proposed model (methodology) will help to elucidate different rheological and hematological related pathologies and finally to design better treatment strategies

    Improved numerical model of the arterial wall applied for simulations of stent deployment within patient-specific coronary arteries

    Get PDF
    Arterial stenosis is the obstruction of normal blood flow that is caused by atherosclerosis. One of the endovascular treatment procedures in this case is the implantation of a stent to restore the blood flow. This study presented an improved numerical model that can precisely simulate the deformation of human arterial wall in coronary arteries, during the stent deployment process. The new model considered the arterial wall as an incompressible, isotropic and hyperelastic material. The material coefficients were defined according to experimental values presented in literature. The accuracy of the numerical model was investigated by comparing the results with follow up data obtained in clinical examination. The small relative and standard deviation error prove that this numerical model can be used to assist clinicians in decision making and treatment planning with reliable predictions of the outcome of the stent deployment procedure

    Three-Dimensional Computer Model of Benign Paroxysmal Positional Vertigo in the Semi-Circular Canal

    No full text
    Benign Paroxysmal Positional Vertigo (BPPV) is the most common vestibular disorder. In this paper we tried to investigate a model of the semi-circular canal (SCC) with parametrically defined dimension and full 3D three SCC from patient-specific 3D reconstruction. Full Navier-Stokes equations and continuity equations are used for fluid domain with Arbitrary-Lagrangian Eulerian (ALE) formulation for mesh motion. Fluid-structure interaction for fluid coupling with cupula deformation is used. Particle tracking algorithm has been used for particle motion. Velocity distribution, shear stress and force from endolymph side are presented for one parametric SCC and three patient-specific SCC. All models are used for correlation with the same experimental protocols with head moving and nystagmus eye tracking
    corecore