113 research outputs found
Effect of electric field on the photoluminescence of polymer-inorganic nanoparticles composites
We report on the effect of electric field on the photoluminescence, PL, from
a composite consisting of a conjugated polymer mixed with zinc oxide
nanoparticles. We have found that in the absence of electric field PL emission
from the composite film has two maxima in the blue and green-yellow regions.
Application of a voltage bias to planar gold electrodes suppresses the
green-yellow emission and shifts the only PL emission maximum towards the blue
region. Current-voltage characteristics of the polymer-nanoparticles composite
exhibit the non-linear behavior typical of non-homogeneous polymer-inorganic
structures. Generation of excited states in the composite structure implies the
presence of several radiative recombination mechanisms including formation of
polymer-nanoparticle complexes including exciplex states and charge transfer
between the polymer and nanoparticle that can be controlled by an electric
field.Comment: 5 pages, 5 figures. accepted for publication in Solid State
Communication
Krupnomasshtabnye izmeneniya atlanticheskikh vod v Arkticheskom Basseine (Large-scale and interannual variability of the Atlantic water in the Arctic Ocean, in Russian)
The long-term variability of the intermediate Atlantic Water (AW) layer in the Arctic Ocean is analyzed. We reveal a positive temperature and negative salinity linear trends for the entire Arctic Ocean. Warming and cooling tendencies in the Canada Basin lags those for the Eurasian Basin by 9-10 years with similar duration for the warming and cooling periods for both basins. In contrast, salinity tendency in the Canada Basin lags those in the Eurasian Basins by 8-16 years salinity, and durationof saltier and fresher anomalies is different. The interannual variability for the depth of AW upper boundary and AW core temperature is studiedusing two first modes of the Empirical Orthogonal Function (EOF) decomposition exhibit unique patterns that have been never observed over the entire period of instrumental observations. For 2009, our analysis reveals the AW recovery to already observed patterns. our examination also shows that the AW warming and cooling is also accompanied by changes in depthsof the AW upper boundary and the AW core that provides evidence for the different volume and properties of the AW during warmer and cooler phases. In this respect, the AW warming in 1950s, 1990s differs from those in during the International Polar Year 2007/200
Karyotype of the blastocoel fluid demonstrates low concordance with both trophectoderm and inner cell mass
Objective
To compare the genomic profiles of blastocoel fluid (BF), inner cell mass (ICM), and trophectoderm (TE) cells derived from the same blastocyst.
Design
Prospective study.
Setting
Academic and in vitro fertilization units.
Patient(s)
Sixteen donated cryopreserved embryos at blastocyst stage.
Intervention(s)
BF, TE, and ICM cells were retrieved from each blastocyst for chromosome analysis by means of next-generation sequencing (NGS).
Main Outcome Measure(s)
Aneuploidy screening and assessment of mosaicism in BF, TE and ICM samples with subsequent comparison of genomic profiles between the three blastocyst compartments.
Result(s)
Out of 16 blastocysts, 10 BF samples and 14 TE and ICM samples provided reliable NGS data for comprehensive chromosome analysis. Only 40.0% of BF-DNA karyotypes were fully concordant with TE or ICM, compared with 85.7% concordance between TE and ICM. In addition, BF-DNA was burdened with mosaic aneuploidies and the total number of affected chromosomes in BF was significantly higher compared with the TE and ICM.
Conclusion(s)
BF-DNA can be successfully amplified and subjected to NGS, but owing to increased discordance with ICM and TE, BF does not adequately represent the status of the rest of the embryo. To overcome biologic and technical challenges associated with BF sampling and processing, blastocentesis would require improvement in both laboratory protocols and aneuploidy calling algorithms. Therefore, TE biopsy remains the most effective way to predict embryonic karyotype, and the use of BF as a single source of DNA for preimplantation genetic screening is not yet advised
Novel long-chain neurotoxins from Bungarus candidus distinguish the two binding sites in muscle-type nicotinic acetylcholine receptors
αδ-Bungarotoxins, a novel group of long-chain α-neurotoxins, manifest different affinity to two agonist/competitive antagonist binding sites of muscle-type nicotinic acetylcholine receptors (nAChRs), being more active at the interface of α–δ subunits. Three isoforms (αδ-BgTx-1–3) were identified in Malayan Krait (Bungarus candidus) from Thailand by genomic DNA analysis; two of them (αδ-BgTx-1 and 2) were isolated from its venom. The toxins comprise 73 amino acid residues and 5 disulfide bridges, being homologous to α-bungarotoxin (α-BgTx), a classical blocker of muscle-type and neuronal α7, α8, and α9α10 nAChRs. The toxicity of αδ-BgTx-1 (LD50 = 0.17–0.28 µg/g mouse, i.p. injection) is essentially as high as that of α-BgTx. In the chick biventer cervicis nerve–muscle preparation, αδ-BgTx-1 completely abolished acetylcholine response, but in contrast with the block by α-BgTx, acetylcholine response was fully reversible by washing. αδ-BgTxs, similar to α-BgTx, bind with high affinity to α7 and muscle-type nAChRs. However, the major difference of αδ-BgTxs from α-BgTx and other naturally occurring α-neurotoxins is that αδ-BgTxs discriminate the two binding sites in the Torpedo californica and mouse muscle nAChRs showing up to two orders of magnitude higher affinity for the α–δ site as compared with α–ε or α–γ binding site interfaces. Molecular modeling and analysis of the literature provided possible explanations for these differences in binding mode; one of the probable reasons being the lower content of positively charged residues in αδ-BgTxs. Thus, αδ-BgTxs are new tools for studies on nAChRs
Nonmonotonic Decay of Nonequilibrium Polariton Condensate in Direct-Gap Semiconductors
Time evolution of a nonequilibrium polariton condensate has been studied in
the framework of a microscopic approach. It has been shown that due to
polariton-polariton scattering a significant condensate depletion takes place
in a comparatively short time interval. The condensate decay occurs in the form
of multiple echo signals. Distribution-function dynamics of noncondensate
polaritons have been investigated. It has been shown that at the initial stage
of evolution the distribution function has the form of a bell. Then
oscillations arise in the contour of the distribution function, which further
transform into small chaotic ripples. The appearance of a short-wavelength wing
of the distribution function has been demonstrated. We have pointed out the
enhancement and then partial extinction of the sharp extra peak arising within
the time interval characterized by small values of polariton condensate density
and its relatively slow changes.Comment: 20 pages, LaTeX 2.09; in press in PR
Clinically relevant morphological structures in breast cancer represent transcriptionally distinct tumor cell populations with varied degrees of epithelial-mesenchymal transition and CD44+CD24- stemness
Intratumor morphological heterogeneity in breast cancer is represented by different morphological structures (tubular, alveolar, solid, trabecular, and discrete) and contributes to poor prognosis; however, the mechanisms involved remain unclear. In this study, we performed 3D imaging, laser microdissection-assisted array comparative genomic hybridization and gene expression microarray analysis of different morphological structures and examined their association with the standard immunohistochemistry scorings and CD44+CD24- cancer stem cells. We found that the intratumor morphological heterogeneity is not associated with chromosomal aberrations. By contrast, morphological structures were characterized by specific gene expression profiles and signaling pathways and significantly differed in progesterone receptor and Ki-67 expression. Most importantly, we observed significant differences between structures in the number of expressed genes of the epithelial and mesenchymal phenotypes and the association with cancer invasion pathways. Tubular (tube-shaped) and alveolar (spheroid-shaped) structures were transcriptionally similar and demonstrated co-expression of epithelial and mesenchymal markers. Solid (large shapeless) structures retained epithelial features but demonstrated an increase in mesenchymal traits and collective cell migration hallmarks. Mesenchymal genes and cancer invasion pathways, as well as Ki-67 expression, were enriched in trabecular (one/two rows of tumor cells) and discrete groups (single cells and/or arrangements of 2-5 cells). Surprisingly, the number of CD44+CD24- cells was found to be the lowest in discrete groups and the highest in alveolar and solid structures. Overall, our findings indicate the association of intratumor morphological heterogeneity in breast cancer with the epithelial-mesenchymal transition and CD44+CD24- stemness and the appeal of this heterogeneity as a model for the study of cancer invasion
Genetic diversity in the Orenburg goat breed revealed by single-nucleotide polymorphism (SNP) analysis: Initial steps in saving a threatened population
Background/Objectives: For genomic selection to enhance the efficiency of broiler production, finding SNPs and candidate genes that define the manifestation of main selected traits is essential. We conducted a genome-wide association study (GWAS) for growth and meat productivity traits of roosters from a chicken F2 resource population (n = 152). Methods: The population was obtained by crossing two breeds with contrasting phenotypes for performance indicators, i.e., Russian White (slow-growing) and Cornish White (fast-growing). The birds were genotyped using the Illumina Chicken 60K SNP iSelect BeadChip. After LD filtering of the data, 54,188 SNPs were employed for the GWAS analysis that allowed us to reveal significant specific associations for phenotypic traits of interest and economic importance. Results: At the threshold value of p < 9.2 × 10−7, 83 SNPs associated with body weight at the age of 28, 42, and 63 days were identified, as well as 171 SNPs associated with meat qualities (average daily gain, slaughter yield, and dressed carcass weight and its components). Moreover, 34 SNPs were associated with a group of three or more traits, including 15 SNPs significant for a group of growth traits and 5 SNPs for a group of meat productivity indicators. Relevant to these detected SNPs, nine prioritized candidate genes associated with the studied traits were revealed, including WNT2, DEPTOR, PPA2, UNC80, DDX51, PAPPA, SSC4D, PTPRU, and TLK2. Conclusions: The found SNPs and candidate genes can serve as genetic markers for growth and meat performance characteristics in chicken breeding in order to achieve genetic improvement in broiler production
Statistical mechanics of ecological systems: Neutral theory and beyond
The simplest theories often have much merit and many limitations, and, in this vein, the value of neutral theory (NT) of biodiversity has been the subject of much debate over the past 15 years. NT was proposed at the turn of the century by Stephen Hubbell to explain several patterns observed in the organization of ecosystems. Among ecologists, it had a polarizing effect: There were a few ecologists who were enthusiastic, and there were a larger number who firmly opposed it. Physicists and mathematicians, instead, welcomed the theory with excitement. Indeed, NT spawned several theoretical studies that attempted to explain empirical data and predicted trends of quantities that had not yet been studied. While there are a few reviews of NT oriented toward ecologists, the goal here is to review the quantitative aspects of NT and its extensions for physicists who are interested in learning what NT is, what its successes are, and what important problems remain unresolved. Furthermore, this review could also be of interest to theoretical ecologists because many potentially interesting results are buried in the vast NT literature. It is proposed to make these more accessible by extracting them and presenting them in a logical fashion. The focus of this review is broader than NT: new, more recent approaches for studying ecological systems and how one might introduce realistic non-neutral models are also discussed
LINE-1 retrotransposon methylation in chorionic villi of first trimester miscarriages with aneuploidy
Purpose High frequency of aneuploidy in meiosis and cleavage stage coincides with waves of epigenetic genome reprogramming that may indicate a possible association between epigenetic mechanisms and aneuploidy occurrence. This study aimed to assess the methylation level of the long interspersed repeat element 1 (LINE-1) retrotransposon in chorionic villi of first trimester miscarriages with a normal karyotype and aneuploidy. Methods The methylation level was assessed at 19 LINE-1 promoter CpG sites in chorionic villi of 141 miscarriages with trisomy of chromosomes 2, 6, 8-10, 13-15, 16, 18, 20-22, and monosomy X using massive parallel sequencing. Results The LINE-1 methylation level was elevated statistically significant in chorionic villi of miscarriages with both trisomy (45.2 +/- 4.3%) and monosomy X (46.9 +/- 4.2%) compared with that in induced abortions (40.0 +/- 2.4%) (p < 0.00001). The LINE-1 methylation levels were specific for miscarriages with different aneuploidies and significantly increased in miscarriages with trisomies 8, 14, and 18 and monosomy X (p < 0.05). The LINE-1 methylation level increased with gestational age both for group of miscarriages regardless of karyotype (R = 0.21, p = 0.012) and specifically for miscarriages with trisomy 16 (R = 0.48, p = 0.007). LINE-1 methylation decreased with maternal age in miscarriages with a normal karyotype (R = - 0.31, p = 0.029) and with trisomy 21 (R = - 0.64, p = 0.024) and increased with paternal age for miscarriages with trisomy 16 (R = 0.38, p = 0.048) and monosomy X (R = 0.73, p = 0.003). Conclusion Our results indicate that the pathogenic effects of aneuploidy in human embryogenesis can be supplemented with significant epigenetic changes in the repetitive sequences
- …