5 research outputs found
Autofluorescence Imaging of Endogenous Metabolic Cofactors in Response to Cytokine Stimulation of Classically Activated Macrophages
Background
Macrophages are one of the most prevalent subsets of immune cells within the tumor microenvironment and perform a range of functions depending on the cytokines and chemokines released by surrounding cells and tissues. Recent research has revealed that macrophages can exhibit a spectrum of phenotypes, making them highly plastic due to their ability to alter their physiology in response to environmental cues. Recent advances in examining heterogeneous macrophage populations include optical metabolic imaging, such as fluorescence lifetime imaging (FLIM), and multiphoton microscopy. However, the method of detection for these systems is reliant upon the coenzymes NAD(P)H and FAD, which can be affected by factors other than cytoplasmic metabolic changes. In this study, we seek to validate these optical measures of metabolism by comparing optical results to more standard methods of evaluating cellular metabolism, such as extracellular flux assays and the presence of metabolic intermediates. Methods
Here, we used autofluorescence imaging of endogenous metabolic co-factors via multiphoton microscopy and FLIM in conjunction with oxygen consumption rate and extracellular acidification rate through Seahorse extracellular flux assays to detect changes in cellular metabolism in quiescent and classically activated macrophages in response to cytokine stimulation. Results
Based on our Seahorse XFP flux analysis, M0 and M1 macrophages exhibit comparable trends in oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). Autofluorescence imaging of M0 and M1 macrophages was not only able to show acute changes in the optical redox ratio from pre-differentiation (0 hours) to 72 hours post-cytokine differentiation (M0: 0.320 to 0.258 and M1: 0.316 to 0.386), mean NADH lifetime (M0: 1.272 ns to 1.379 ns and M1: 1.265 ns to 1.206 ns), and A1/A2 ratio (M0: 3.452 to ~ 4 and M1: 3.537 to 4.529) but could also detect heterogeneity within each macrophage population. Conclusions
Overall, the findings of this study suggest that autofluorescence metabolic imaging could be a reliable technique for longitudinal tracking of immune cell metabolism during activation post-cytokine stimulation
Live-Cell Imaging Quantifies Changes in Function and Metabolic NADH Autofluorescence During Macrophage-Mediated Phagocytosis of Tumor Cells
The immune system has evolved to detect foreign antigens and deliver coordinated responses, while minimizing “friendly fire.” Until recently, studies investigating the behavior of immune cells were limited to static in vitro measurements. Although static measurements allow for real-time imaging, results are often difficult to translate to an in vivo setting. Multiphoton microscopy is an emerging method to capture spatial information on subcellular events and characterize the local microenvironment. Previous studies have shown that multiphoton microscopy can monitor changes in single-cell macrophage heterogeneity during differentiation. Therefore, there is a need to use multiphoton microscopy to monitor molecular interactions during immunological activities like phagocytosis. Here we investigate the correlation between phagocytic function and changes in endogenous optical reporters during phagocytosis. In vitro autofluorescence imaging of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) was used to detect metabolic changes in macrophages during phagocytosis. More specifically, optical redox ratio, mean NADH fluorescence lifetime and ratio of free to protein-bound NADH were used to quantify changes in metabolism. Results show that IFN-γ (M1) macrophages showed decreased optical redox ratios and mean NADH lifetime while phagocytosing immunogenic cancer cells compared to metastatic cells. To validate phagocytic function, a fluorescence microscopy-based protocol using a pH-sensitive fluorescent probe was used. Results indicate that M0 and M1 macrophages show similar trends in phagocytic potential. Overall, this work demonstrates that in vitro multiphoton imaging can be used to longitudinally track changes in phagocytosis and endogenous metabolic cofactors.</p