961 research outputs found
To Learn or Not to Learn Features for Deformable Registration?
Feature-based registration has been popular with a variety of features
ranging from voxel intensity to Self-Similarity Context (SSC). In this paper,
we examine the question on how features learnt using various Deep Learning (DL)
frameworks can be used for deformable registration and whether this feature
learning is necessary or not. We investigate the use of features learned by
different DL methods in the current state-of-the-art discrete registration
framework and analyze its performance on 2 publicly available datasets. We draw
insights into the type of DL framework useful for feature learning and the
impact, if any, of the complexity of different DL models and brain parcellation
methods on the performance of discrete registration. Our results indicate that
the registration performance with DL features and SSC are comparable and stable
across datasets whereas this does not hold for low level features.Comment: 9 pages, 4 figure
A Characterization of Scale Invariant Responses in Enzymatic Networks
An ubiquitous property of biological sensory systems is adaptation: a step
increase in stimulus triggers an initial change in a biochemical or
physiological response, followed by a more gradual relaxation toward a basal,
pre-stimulus level. Adaptation helps maintain essential variables within
acceptable bounds and allows organisms to readjust themselves to an optimum and
non-saturating sensitivity range when faced with a prolonged change in their
environment. Recently, it was shown theoretically and experimentally that many
adapting systems, both at the organism and single-cell level, enjoy a
remarkable additional feature: scale invariance, meaning that the initial,
transient behavior remains (approximately) the same even when the background
signal level is scaled. In this work, we set out to investigate under what
conditions a broadly used model of biochemical enzymatic networks will exhibit
scale-invariant behavior. An exhaustive computational study led us to discover
a new property of surprising simplicity and generality, uniform linearizations
with fast output (ULFO), whose validity we show is both necessary and
sufficient for scale invariance of enzymatic networks. Based on this study, we
go on to develop a mathematical explanation of how ULFO results in scale
invariance. Our work provides a surprisingly consistent, simple, and general
framework for understanding this phenomenon, and results in concrete
experimental predictions
Kidins220 deficiency causes ventriculomegaly via SNX27-retromer-dependent AQP4 degradation
Several psychiatric, neurologic and neurodegenerative disorders present increased brain ventricles volume, being hydrocephalus the disease with the major manifestation of ventriculomegaly caused by the accumulation of high amounts of cerebrospinal fluid (CSF). The molecules and pathomechanisms underlying cerebral ventricular enlargement are widely unknown. Kinase D interacting substrate of 220 kDa (KIDINS220) gene has been recently associated with schizophrenia and with a novel syndrome characterized by spastic paraplegia, intellectual disability, nystagmus and obesity (SINO syndrome), diseases frequently occurring with ventriculomegaly. Here we show that Kidins220, a transmembrane protein effector of various key neuronal signalling pathways, is a critical regulator of CSF homeostasis. We observe that both KIDINS220 and the water channel aquaporin-4 (AQP4) are markedly downregulated at the ventricular ependymal lining of idiopathic normal pressure hydrocephalus (iNPH) patients. We also find that Kidins220 deficient mice develop ventriculomegaly accompanied by water dyshomeostasis and loss of AQP4 in the brain ventricular ependymal layer and astrocytes. Kidins220 is a known cargo of the SNX27-retromer, a complex that redirects endocytosed plasma membrane proteins (cargos) back to the cell surface, thus avoiding their targeting to lysosomes for degradation. Mechanistically, we show that AQP4 is a novel cargo of the SNX27-retromer and that Kidins220 deficiency promotes a striking and unexpected downregulation of the SNX27-retromer that results in AQP4 lysosomal degradation. Accordingly, SNX27 silencing decreases AQP4 levels in wild-type astrocytes whereas SNX27 overexpression restores AQP4 content in Kidins220 deficient astrocytes. Together our data suggest that the KIDINS220-SNX27-retromer-AQP4 pathway is involved in human ventriculomegaly and open novel therapeutic perspectives
Cross-Modality Multi-Atlas Segmentation Using Deep Neural Networks
Both image registration and label fusion in the multi-atlas segmentation
(MAS) rely on the intensity similarity between target and atlas images.
However, such similarity can be problematic when target and atlas images are
acquired using different imaging protocols. High-level structure information
can provide reliable similarity measurement for cross-modality images when
cooperating with deep neural networks (DNNs). This work presents a new MAS
framework for cross-modality images, where both image registration and label
fusion are achieved by DNNs. For image registration, we propose a consistent
registration network, which can jointly estimate forward and backward dense
displacement fields (DDFs). Additionally, an invertible constraint is employed
in the network to reduce the correspondence ambiguity of the estimated DDFs.
For label fusion, we adapt a few-shot learning network to measure the
similarity of atlas and target patches. Moreover, the network can be seamlessly
integrated into the patch-based label fusion. The proposed framework is
evaluated on the MM-WHS dataset of MICCAI 2017. Results show that the framework
is effective in both cross-modality registration and segmentation
TEAD and YAP regulate the enhancer network of human embryonic pancreatic progenitors.
The genomic regulatory programmes that underlie human organogenesis are poorly understood. Pancreas development, in particular, has pivotal implications for pancreatic regeneration, cancer and diabetes. We have now characterized the regulatory landscape of embryonic multipotent progenitor cells that give rise to all pancreatic epithelial lineages. Using human embryonic pancreas and embryonic-stem-cell-derived progenitors we identify stage-specific transcripts and associated enhancers, many of which are co-occupied by transcription factors that are essential for pancreas development. We further show that TEAD1, a Hippo signalling effector, is an integral component of the transcription factor combinatorial code of pancreatic progenitor enhancers. TEAD and its coactivator YAP activate key pancreatic signalling mediators and transcription factors, and regulate the expansion of pancreatic progenitors. This work therefore uncovers a central role for TEAD and YAP as signal-responsive regulators of multipotent pancreatic progenitors, and provides a resource for the study of embryonic development of the human pancreas
Modulation of enhancer looping and differential gene targeting by Epstein-Barr virus transcription factors directs cellular reprogramming
Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of enhancer-promoter interactions by viral transcription factors
Hirsch Index and Truth Survival in Clinical Research
BACKGROUND: Factors associated with the survival of truth of clinical conclusions in the medical literature are unknown. We hypothesized that publications with a first author having a higher Hirsch' index value (h-I), which quantifies and predicts an individual's scientific research output, should have a longer half-life. METHODS AND RESULTS: 474 original articles concerning cirrhosis or hepatitis published from 1945 to 1999 were selected. The survivals of the main conclusions were updated in 2009. The truth survival was assessed by time-dependent methods (Kaplan Meier method and Cox). A conclusion was considered to be true, obsolete or false when three or more observers out of the six stated it to be so. 284 out of 474 conclusions (60%) were still considered true, 90 (19%) were considered obsolete and 100 (21%) false. The median of the h-I was=24 (range 1-85). Authors with true conclusions had significantly higher h-I (median=28) than those with obsolete (h-I=19; P=0.002) or false conclusions (h-I=19; P=0.01). The factors associated (P<0.0001) with h-I were: scientific life (h-I=33 for>30 years vs. 16 for<30 years), -methodological quality score (h-I=36 for high vs. 20 for low scores), and -positive predictive value combining power, ratio of true to not-true relationships and bias (h-I=33 for high vs. 20 for low values). In multivariate analysis, the risk ratio of h-I was 1.003 (95%CI, 0.994-1.011), and was not significant (P=0.56). In a subgroup restricted to 111 articles with a negative conclusion, we observed a significant independent prognostic value of h-I (risk ratio=1.033; 95%CI, 1.008-1.059; P=0.009). Using an extrapolation of h-I at the time of article publication there was a significant and independent prognostic value of baseline h-I (risk ratio=0.027; P=0.0001). CONCLUSIONS: The present study failed to clearly demonstrate that the h-index of authors was a prognostic factor for truth survival. However the h-index was associated with true conclusions, methodological quality of trials and positive predictive values
High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic atlas
The amygdala is composed of multiple nuclei with unique functions and connections in the limbic system and to the rest of the brain. However, standard in vivo neuroimaging tools to automatically delineate the amygdala into its multiple nuclei are still rare. By scanning postmortem specimens at high resolution (100-150µm) at 7T field strength (n = 10), we were able to visualize and label nine amygdala nuclei (anterior amygdaloid, cortico-amygdaloid transition area; basal, lateral, accessory basal, central, cortical medial, paralaminar nuclei). We created an atlas from these labels using a recently developed atlas building algorithm based on Bayesian inference. This atlas, which will be released as part of FreeSurfer, can be used to automatically segment nine amygdala nuclei from a standard resolution structural MR image. We applied this atlas to two publicly available datasets (ADNI and ABIDE) with standard resolution T1 data, used individual volumetric data of the amygdala nuclei as the measure and found that our atlas i) discriminates between Alzheimer's disease participants and age-matched control participants with 84% accuracy (AUC=0.915), and ii) discriminates between individuals with autism and age-, sex- and IQ-matched neurotypically developed control participants with 59.5% accuracy (AUC=0.59). For both datasets, the new ex vivo atlas significantly outperformed (all p < .05) estimations of the whole amygdala derived from the segmentation in FreeSurfer 5.1 (ADNI: 75%, ABIDE: 54% accuracy), as well as classification based on whole amygdala volume (using the sum of all amygdala nuclei volumes; ADNI: 81%, ABIDE: 55% accuracy). This new atlas and the segmentation tools that utilize it will provide neuroimaging researchers with the ability to explore the function and connectivity of the human amygdala nuclei with unprecedented detail in healthy adults as well as those with neurodevelopmental and neurodegenerative disorders
Symbiodinium Genotypic and Environmental Controls on Lipids in Reef Building Corals
BACKGROUND: Lipids in reef building corals can be divided into two classes; non-polar storage lipids, e.g. wax esters and triglycerides, and polar structural lipids, e.g. phospholipids and cholesterol. Differences among algal endosymbiont types are known to have important influences on processes including growth and the photobiology of scleractinian corals yet very little is known about the role of symbiont types on lipid energy reserves. METHODOLOGY/PRINCIPAL FINDINGS: The ratio of storage lipid and structural lipid fractions of Scott Reef corals were determined by thin layer chromatography. The lipid fraction ratio varied with depth and depended on symbiont type harboured by two corals (Seriatopora hystrix and Pachyseris speciosa). S. hystrix colonies associated with Symbiodinium C1 or C1/C# at deep depths (>23 m) had lower lipid fraction ratios (i.e. approximately equal parts of storage and structural lipids) than those with Symbiodinium D1 in shallow depths (<23 m), which had higher lipid fraction ratios (i.e. approximately double amounts of storage relative to structural lipid). Further, there was a non-linear relationship between the lipid fraction ratio and depth for S. hystrix with a modal peak at ∼23 m coinciding with the same depth as the shift from clade D to C types. In contrast, the proportional relationship between the lipid fraction ratio and depth for P. speciosa, which exhibited high specificity for Symbiodinium C3 like across the depth gradient, was indicative of greater amounts of storage lipids contained in the deep colonies. CONCLUSIONS/SIGNIFICANCE: This study has demonstrated that Symbiodinium exert significant controls over the quality of coral energy reserves over a large-scale depth gradient. We conclude that the competitive advantages and metabolic costs that arise from flexible associations with divergent symbiont types are offset by energetic trade-offs for the coral host
Imbalance of neurotrophin receptor isoforms TrkB-FL/TrkB-T1 induces neuronal death in excitotoxicity
A better understanding of the mechanisms underlying neuronal death in cerebral ischemia is required for the development of stroke therapies. Here we analyze the contribution of the tropomyosin-related kinase B (TrkB) neurotrophin receptor to excitotoxicity, a primary pathological mechanism in ischemia, which is induced by overstimulation of glutamate receptors of the N-methyl-D-aspartate type. We demonstrate a significant modification of TrkB expression that is strongly associated with neurodegeneration in models of ischemia and in vitro excitotoxicity. Two mechanisms cooperate for TrkB dysregulation: (1) calpain-processing of full-length TrkB (TrkB-FL), high-affinity receptor for brain-derived neurotrophic factor, which produces a truncated protein lacking the tyrosine-kinase domain and strikingly similar to the inactive TrkB-T1 isoform and (2) reverse regulation of the mRNA of these isoforms. Collectively, excitotoxicity results in a decrease of TrkB-FL, the production of truncated TrkB-FL and the upregulation of TrkB-T1. A similar neuro-specific increase of the TrkB-T1 isoform is also observed in stroke patients. A lentivirus designed for both neuro-specific TrkB-T1 interference and increased TrkB-FL expression allows recovery of the TrkB-FL/TrkB-T1 balance and protects neurons from excitotoxic death. These data implicate a combination of TrkB-FL downregulation and TrkB-T1 upregulation as significant causes of neuronal death in excitotoxicity, and reveal novel targets for the design of stroke therapies
- …