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ABSTRACT 

The amygdala is composed of multiple nuclei with unique functions and connections in 

the limbic system and to the rest of the brain. However, standard in vivo neuroimaging 

tools to automatically delineate the amygdala into its multiple nuclei are still rare.  By 

scanning postmortem specimens at high resolution (100-150µm) at 7T field strength (n = 

10), we were able to visualize and label nine amygdala nuclei (anterior amygdaloid, 

cortico-amygdaloid transition area; basal, lateral, accessory basal, central, cortical medial, 

paralaminar nuclei). We created an atlas from these labels using a recently developed 

atlas building algorithm based on Bayesian inference.  This atlas, which will be released 

as part of FreeSurfer, can be used to automatically segment nine amygdala nuclei from a 

standard resolution structural MR image. We applied this atlas to two publicly available 

datasets (ADNI and ABIDE) with standard resolution T1 data, used individual volumetric 

data of the amygdala nuclei as the measure and found that our atlas i) discriminates 

between Alzheimer’s disease participants and age-matched control participants with 84% 

accuracy (AUC=0.915), and ii) discriminates between individuals with autism and age-, 

sex- and IQ-matched neurotypically developed control participants with 59.5% accuracy 

(AUC=0.59). For both datasets, the new ex vivo atlas significantly outperformed (all p < 

.05) estimations of the whole amygdala derived from the segmentation in FreeSurfer 5.1 

(ADNI: 75%, ABIDE: 54% accuracy), as well as classification based on whole amygdala 

volume (using the sum of all amygdala nuclei volumes; ADNI: 81%, ABIDE: 55% 

accuracy). This new atlas and the segmentation tools that utilize it will provide 

neuroimaging researchers with the ability to explore the function and connectivity of the 

human amygdala nuclei with unprecedented detail in healthy adults as well as those with 

neurodevelopmental and neurodegenerative disorders. 

 

Highlights: 
-We visualized 9 nuclei boundaries (anterior amygdaloid area, cortico-amygdaloid 

transition area; basal, lateral, accessory basal, central, cortical medial, paralaminar nuclei) 

using ultra-high-resolution ex vivo imaging  

-Nuclei were consistent across cases and raters 
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- We built a segmentation atlas of the amygdala nuclei, which will be distributed with 

FreeSurfer 

-The atlas was applied to 2 separate datasets and demonstrated higher discriminability of 

Alzheimer’s disease & autism than previously possible with amygdala segmentation 

methods 

-The atlas will provide neuroimaging researchers with the ability to test nucleus function 

with greater spatial specificity  

 

Keywords (6 max): amygdala, medial temporal lobe, atlas, ex vivo, autism, Alzheimer’s  

 

1. INTRODUCTION 

The amygdala is composed of heterogeneous nuclei, defined primarily by their distinct 

cytoarchitecture, neurotransmitters, and connectivity patterns (Freese and Amaral, 2005, 

2006, 2009; Alheid, 2003; Price et al., 1987; Aggleton, 2000; Gloor, 1972, 1978, 1997; 

McDonald, 1998; LeDoux, 1998, De Olmos, 2004; De Olmos & Heimer, 1999). Studies 

on rodents and non-human primates have advanced our understanding of the functions of 

the individual nuclei. For example, the lateral (La) and basal (Ba) nuclei are engaged in 

updating current stimulus value associations, primarily through connections with 

orbitofrontal regions (Baxter and Murray, 2002); the central nucleus (Ce) is believed to 

mediate behavioral responses to potentially harmful stimuli and fear perception through 

its connectivity with hypothalamus, basal forebrain, and the brainstem (Kalin et al., 2004; 

Phillips & LeDoux, 1992).  In humans, the amygdala as a whole is thought to play a key 

role in emotional and social cognitive processes (e.g. Adolphs et al., 2005, Kliemann et 

al. 2012, Hortensius et al., 2016), and accordingly, its dysfunction is implicated in 

psychopathologies, such as mood disorders (Phillips et al., 2003; Siegle et al., 2002), 

anxiety disorders (Birbaumer et al., 1998; Rauch et al., 2003), and developmental 

disorders (Baron-Cohen et al., 2000; Dziobek et al., 2010).  Additionally, several post 

mortem studies have shown that the amygdala is a common site for neurofibrillary 

tangles and senile plaques in mild cognitive impairment (Merkesbery, 2010) and 

Alzheimer’s disease (Yilmazer-Hanke, 1998) as well as Lewy bodies (Kotzbauer et al., 

2011, Fujishiro et al., 2002 ).   
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However, the relationship between the structure and function of the distinct nuclei in 

humans remain largely unknown, both in health and disease.  The small size of the 

amygdala’s nuclei has made it difficult to study this structure noninvasively in the living 

brain using standard neuroimaging resolution.  Previous segmentation studies of the 

amygdala have used either i) visual approximation based on a single-subject histological 

atlas (Etkin et al., 2004; dorsal vs. ventral amygdala Dolan, 2002, 2007); ii) manual 

segmentations based on in vivo neuroimaging; iii) normalization and application of a 

probabilistic atlas (Amunts et al., 2005, Solano-Castiella et al., 2011); or iv) 

segmentations based on diffusion-weighted imaging.  The first two approaches are labor 

intensive and susceptible to human error. Using the reference space of the MNI single 

subject, has limited applicability in segmentation for two reasons: first, spatial 

normalization can lead to inaccuracies due to the fact that the annotations were made on 

histology, which leads to blurry probability maps; and second, the direct warping of such 

probability maps to obtain segmentations greatly suffers from registration errors. 

Additionally, these previous approaches have segmented the amygdala into 2-4 nucleus 

groups.  The use of diffusion- weighted imaging to segment the amygdala has been 

attractive due to the possibility of automation and within-subject segmentation (rather 

than normalization to a template). Fiber orientations within the amygdala have been used 

to divide the structure into two subregions, centromedial and basolateral (Solano-

Castiella et al., 2010). However, this method, like others before it, performed analyses on 

images normalized to a template brain, and were restricted to only two subdivisions. 

Diffusion connectivity patterns have also been used to delineate each individual’s 

amygdala into four nucleic groups, using nucleus-specific connectivity patterns based on 

previous animal literature (Saygin et al. 2011; Saygin et al. 2015).  While this method 

offered more nucleic groups (parcellated into 4 groups), the nuclei were dependent on 

each individual’s connectivity patterns, which may be compromised in some patient 

populations. Thus, a segmentation method independent of connectivity and with finer 

detail (i.e. nuclei instead of subregions) offers a better understanding of the individual 

nuclei of the amygdala.   
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Without an easily accessible technique with which to parcellate the amygdala, it is 

difficult to elucidate the separate roles of the human amygdala nuclei, as well as the 

impact of individual differences in nucleus structure and function. Moreover, progress 

towards mechanistic theories of dysfunction and abnormal development will remain 

hindered until these structures can be explored in vivo.   

 

Here, we use ex vivo MRI data from autopsy brains to delineate the amygdala nuclei and 

build a probabilistic atlas of amygdala anatomy, using a novel algorithm, which will be 

distributed as part of the FreeSurfer software.  Our ex vivo imaging protocol yields 

images with extremely high resolution and signal-to-noise ratio, dramatically higher than 

is possible in vivo, which allows us to accurately identify more nuclei with a 

segmentation protocol specifically designed for this study.  We were able to define nine 

amygdala nuclei that are major subdivisions in human and animal histology literature 

(e.g. deOlmos 2004; Gloor et al., 1997; Brockhaus 1938; Sims & Williams, 1990; Freese 

& Amaral, 2009; Whalen & Phelps 2009; LeDoux 1998), and whose boundaries are 

clearly visible in the ex vivo images (see also Methods).  This segmentation focuses on 

the main amygdala nuclei in the medial temporal lobe and not the extended amygdala. 

Our previous work - the ex vivo hippocampal atlas (Iglesias et al., 2015) - uses a 

generative modeling framework to directly segment individual subject in vivo MRI data 

in target space; the resulting segmentation algorithm can be used to analyze standard in 

vivo MRI scans with varying overall image contrast properties and intensity distributions, 

while producing sharper and more accurate label posterior probabilities than direct 

registration to a reference space. Here, we use this approach and extend it to the 

amygdala. We also apply this atlas to two publicly available datasets with standard 

resolution T1 data, and evaluate how well the resulting amygdala nucleus segmentation 

volumes can classify i) individuals with Alzheimer’s disease and older adult controls and 

ii) individuals with autism and age-matched controls. 

 

2. MATERIALS and METHODS 

2.1 Autopsy brain samples and ex vivo MRI acquisition  
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The dataset of ex vivo scans comprised 10 autopsied brain hemispheres from the 

Massachusetts General Hospital Autopsy Service (Massachusetts General Hospital, 

Boston, MA) and from the Framingham Heart Study and Boston University Alzheimer's 

Disease Center (Veterans Administration Medical Center, Bedford, MA). Samples 

consisted of 5 right and 5 left hemispheres (or blocks encompassing the amygdala) of 10 

cases (9 without any neurological conditions, 1 with mild AD). Table 1 lists the subject-

specific demographic information. In short, subjects were on average 67 years old at the 

time of death, 2 were female, and the post-mortem interval did not exceed 24 hours. 

Please note that we use the term ‘case’ to refer to hemispheres. We use this terminology 

to ensure that each case represents one hemisphere from a separate individual (not, e.g. 

10 hemispheres from 5 individuals). 

From each ex vivo sample, a block of tissue surrounding the amygdala (or the 

complete MTL) was excised and first fixed with 10% formalin and then transferred to 

periodate–lysine–paraformaldehyde (PLP). Depending on its size, the block was placed 

in either a plastic cylindrical centrifuge tube (60 ml, 3 cm diameter) or inside a plastic 

sealed bag filled with PLP. In the latter case, air was pumped out using a needle and a 

vacuum pump in order to minimize the number and size of air bubbles in the samples. 

The tissue block was subsequently scanned in a 7 T Siemens scanner using a 3D FLASH 

sequence with TR = 60msec, TE = 30 msec, α = 20° (Fischl et al., 2009; Augustinack et 

al., 2013). Six of the samples were scanned at 0.1 mm isotropic resolution (three with TE 

= 12.8 msec and TR = 40msec; and three with TE1 = 10.75 msec, TE2 = 25.5 msec and 

TR = 45 msec α = 35°), three at 0.12 mm and one at 0.15 mm. Radio frequency coils 

were used in the acquisition, accommodating variations in sample size: either a 4-turn 

solenoid coil (28.5 mm inner diameter, 44 mm length), a 4-channel phased-array (a linear 

array of loop coil elements each with 5 cm coil diameter, 1.5 cm overlap between 

adjacent elements, 16 cm in length) were used. Despite the fact that different coils were 

used to scan the different samples, the output images were comparable in quality. The 

whole procedure received IRB approval before its execution by the Partners Human 

Research Committee; thus, all tissue was collected in accordance with approved 

protocols. 
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Manual segmentation of ex vivo MRI data: anatomical definitions 

J.C.A., Z.M.S., and D.K. developed the amygdala segmentation protocol based on 

several histology and morphometry resources (deOlmos 2004; Gloor et al., 1997; 

Brockhaus 1938; Sims & Williams, 1990; we also surveyed the monkey amygdala 

parcellation (Freese & Amaral, 2009), Whalen & Phelps 2009, Chapter 1) as an 

additional guide but focused on the human literature as the primary source for our 

parcellation.  The amygdala annotations are described in Table 2: lateral nucleus, basal 

nucleus, accessory basal nucleus, central nucleus, medial nucleus, cortical nucleus, 

anterior amygdaloid area, cortico-amygdaloid transition area. In humans, CAT is the 

equivalent to the periamygdaloid cortex (PAC) in animals, except layer PAC-3 which this 

protocol considers as part of the cortical nucleus (see below).  Although several other 

nuclei of the amygdala have been described in histologic preparations (e.g. intercalated 

nuclei or subdivisions of each nuclei), we only labeled nuclei that were visible via ex vivo 

MRI contrast. Note that the descriptions are not based on histology but mainly on the 

contrast at the boundary that was visible in the ex vivo MRI data. We describe the manual 

labeling protocol in detail based on the contrast visible in the ex vivo data. 

Three manual raters (Z.M.S., D.K., and E.B.) then applied the developed protocol 

to the ten ex vivo cases independently. Each case required several weeks (average 4 

weeks) to annotate and varied slightly with image quality (due to human brain tissue 

variability) and in resulting image contrast.  Although the overall image contrast varied 

across the cases, each case had sufficient image quality to be able to determine the 

boundary between nuclei and label these nuclei based on this contrast at the boundaries. 

Due to the high resolution of the scans, the resulting number of slices containing 

amygdala in coronal orientation was 133 (SD: 28.1) while a standard in vivo T1 (1mm 

resolution) typically contains ~18 slices of amygdala. We used Freeview, a visualization 

tool implemented in FreeSurfer to perform the manual labeling of the amygdala nuclei. 

Most MR volumes needed a slight rotation, which align the brain tissue to a coronal view 

and standardized the orthogonal planes for labeling. In the rare case of bubbles or tissue 

damage on MR images (2 cases, spreading only a very small portion of all slices), we 

labeled affected voxels according to i) the nuclei surrounding unaffected tissue as well as 

ii) the appearance of the nuclei anterior to posteriorly. 
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 In general, annotations were made in the coronal view. Axial and sagittal views 

were used in addition to guide delineation of subregions and these additional views (and 

the 3D nature of MRI) helped better define the nuclei contrast and borders. Note that the 

strategy to annotate mainly in coronal view leads to slightly jagged boundaries in the two 

other views. However, this effect is averaged out during downsampling and construction 

of the atlas. To maximize the high level of anatomical consistency across raters, J.C.A. 

served as quality control, while supervising and suggesting refinement of delineations if 

necessary based on MRI boundary contrast between nuclei. The objective of the 

neuroanatomist was to verify that the labeling was true to the MRI contrast to ensure 

quality labeling and not to influence the labeling itself.  

 

Atlas construction 

In this study, we encode the anatomical variability of the amygdala and 

surrounding tissue into a statistical atlas. Following Van Leemput (2009), the atlas is 

represented by a tetrahedral mesh that covers the amygdala (and surrounding structures) 

in a canonical space. Each vertex in the mesh has an associated vector of label 

probabilities, which contains the relative frequencies with which each neuroanatomical 

label is observed at each location. These probabilities are estimated at non-vertex 

locations using barycentric interpolation. The mesh is endowed with a deformation 

model, which allows it to cover the spectrum of anatomical variability in the population 

of the training data. This model infinitely penalizes the folding or collapsing of 

tetrahedra, which effectively preserves the topology of the mesh when deformed 

(Ashburner et al., 2000). 

Constructing the atlas requires estimating the label probabilities at each vertex 

and the topology of the mesh, given a number of training manual segmentations. Here we 

use a modified version of Van Leemput’s algorithm (Iglesias et al., 2015) that enables us 

to integrate training datasets that are labeled with different protocols, such that we can 

combine the manual segmentations of the ex vivo data (nuclei of the amygdala) and the in 

vivo scans (whole amygdala and surrounding structures). These two datasets are 

complementary: the former informs the atlas on the internal structure of the amygdala, 
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whereas the latter provides information on the outer contour of the amygdala and its 

surrounding structures.  

The training process is based on Bayesian inference, i.e., answering the question: 

“what was the statistical atlas that most likely generated the manual segmentations?” The 

algorithm amounts to a group-wise registration of the manual segmentations using a high-

density tetrahedral mesh followed by a mesh simplification process. The simplification 

uses a Bayesian model selection algorithm that automatically encodes the label 

uncertainty (blurring) in each region: convoluted areas, which are well represented in the 

training data are covered by small tetrahedra, while flat areas are covered by larger 

tetrahedra. Further details of the atlas representation can be found in Van Leemput (2009) 

and Iglesias (2015).  A coronal section of the atlas with and without the tetrahedral mesh 

is shown in Figure 3.  

 

Segmentation of in vivo MRI data 

The segmentation of the data is posed as a Bayesian inference problem within a 

generative model of MRI images. The model assumes that: i) the atlas is first warped 

according to its deformation model; ii) a segmentation is then sampled from the label 

probabilities; and iii) image intensities are sampled at each voxel from a Gaussian 

distribution whose mean and variance depend on the label (tissue type) of the voxel. 

Within this model, the estimation of the segmentation is again posed as a Bayesian 

inference problem: “Given the atlas and the image intensities, what is the most probable 

segmentation?” 

Finding the most like segmentation requires the minimization of a cost function 

that consists of two terms: a prior that encodes the cost of deforming the atlas and a 

likelihood term related to the probability of observing the image intensities given the 

segmentation. The segmentation algorithm minimizes the cost function by alternately 

optimizing the deformation of the atlas mesh and the Gaussian parameters (means and 

variances). The fact that these means and variances are estimated directly from the MRI 

scan to analyze (rather than encoded in the prior) makes the algorithm robust to changes 

in MRI contrast. Further details can be found in Van Leemput (2009), Van Leemput 

(2009b) and Iglesias (2015). 
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In vivo training MRI data 

In order to be useful in segmentation, our probabilistic atlas needs to describe not only 

the amygdala nuclei but also the statistical distribution of the surrounding anatomy (e.g., 

hippocampus, cortex, etc). This distribution is learned from a separate dataset of 39 in 

vivo brain T1 MRI scans (19 males, 20 females, mean age: 56.3 years, 29 controls, 10 

mildly demented) that where manually labeled at the structure level (i.e., whole 

amygdala, whole hippocampus, etc). We note that this was the dataset that was used to 

estimate the probabilistic atlas in the main FreeSurfer “recon-all” stream (Fischl et al., 

2002, Fischl et al., 2004). Using the technique described in Iglesias et al. (2015), we 

combined the in vivo and ex vivo delineations into a single probabilistic atlas, including 

both the amygdala nuclei and surrounding structures.  

 

In vivo MR data (quantitative test sets) 

We further tested whether the probabilistic atlas can not only consistently identify 

amygdala nuclei in individual standard anatomical in vivo scans, but also whether the 

information about nuclei can be used to reliably distinguish between neuropathologic and 

neurotypical groups. To this end, we compared two neuropathologic groups with matched 

control groups in which the expected between-group structural differences ranged from 

gross to subtle.  

The first comparison was based on a dataset of MRI scans from the Alzheimer's 

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). AD shows 

substantial neuropathology in medial temporal lobe structures, including the amygdala. 

As a second group comparison we chose a population that has a more diverse 

neuropathology in the amygdala – no clear consensus has emerged in autism yet. We 

compared age-, sex-, IQ-matched typically developed healthy control sample and Autism 

Spectrum Disorders (ASD). Data was taken from the Autism Brain Imaging Data 

Exchange initiative (ABIDE, http://fcon_1000.projects.nitrc.org/indi/abide/, DiMartino et 

al., 2014). Both datasets were processed with FreeSurfer version 5.1. 

 

Information about the in vivo samples ADNI 
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The selection from the ADNI-dataset comprised 213 AD individuals and 161 

healthy control participants matched for age (AD: 76.04 (SD 5.42), CNT: 75.58 (SD 

7.37), t(372) = .7, p = .48). The ADNI was launched in 2003 by the National Institute on 

Aging, the National Institute of Biomedical Imaging and Bioengineering, the Food and 

Drug Administration, private pharmaceutical companies and non-profit organizations, as 

a $60 million, 5-year public-private partnership. The main goal of ADNI is to test 

whether MRI, positron emission tomography (PET), other biological markers, and 

clinical and neuropsychological assessment can be combined to analyze the progression 

of MCI and early AD. Markers of early AD progression can aid researchers and 

clinicians to develop new treatments and monitor their effectiveness, as well as decrease 

the time and cost of clinical trials. The Principal Investigator of this initiative is Michael 

W. Weiner, MD, VA Medical Center and University of California — San Francisco. 

ADNI is a joint effort by co-investigators from industry and academia. Subjects have 

been recruited from over 50 sites across the U.S. and Canada. The initial goal of ADNI 

was to recruit 800 subjects but ADNI has been followed by ADNI-GO and ADNI-2. 

These three protocols have recruited over 1500 adults (ages 55–90) to participate in the 

study, consisting of cognitively normal older individuals, people with early or late MCI, 

and people with early AD. The follow up duration of each group is specified in the 

corresponding protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally 

recruited for ADNI-1 and ADNI-GO had the option to be followed in ADNI-2. For up-to-

date information, see http://www.adni-info.org. MR images are T1-weighted and have 

1mm isotropic resolution. Exact acquisition parameters depend on the site that acquired 

the data. Further details can be found in adni-info.org. 

 

ABIDE 

The selection from the ABIDE-dataset included 131 individuals on the Autism 

Spectrum and 131 neurotypically-developed control subjects and was a priori to analysis. 

The selection of data from the complete dataset was motivated as follows: First, a 

qualitative assessment of FreeSurfer derived amygdala segmentations was performed by 

visually inspecting 3D representations thereof. The resulting number of cases was further 

reduced by choosing only adults (age > 18) with an IQ over 90. Third, we consecutively 
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reduced the number of control subjects until the number of subjects in each group was 

equal by excluding control subjects with the highest IQ within their group. This 

procedure resulted in groups matched for age (ASD: 26.4 (SD 8.88), NT: 25.95 (SD: 

6.99), t(26) = .43, p = .67), FIQ (ASD: 111.87, NT: 11179, t(260) = .07, p = .95) and sex 

(ASD: 16 females, NT: 18 females).  

 

Discrimination analyses 

In this work, we use the ability to discriminate groups using volumes of nuclei as 

a proxy for segmentation quality. In order to ensure that the accuracy of the 

discrimination is mostly determined by the quality of the input features (i.e., volumes of 

nuclei) rather than fluctuations in the classifier, we use a simple linear discriminant 

analysis (LDA, Fisher 1936). More specifically, we use a leave one out scheme in which, 

for each subject, we first compute the direction that best separates the two classes using 

all other subjects, and then evaluate the projection of the subject at hand on that direction 

to compute a scalar score. Once we have the scores for all the subjects, we carry out two 

analyses. First, we compute the p-value of a non-parametric statistical test (Wilcoxon 

rank sum) comparing the scores of the two groups. And second, we build a receiver 

operating characteristic (ROC) curve, and compute the discrimination accuracy at the 

optimal point of operation (“elbow”), as well as the area under the curve (AUC). In order 

to statistically compare the performance of two atlases, we use a paired DeLong test 

(DeLong et al., 1998) that compares the areas under the corresponding ROC curves.  This 

comparison tests whether information derived from the new atlas, either using the sum of 

all nuclei or using all the nuclei volumes as a multi-dimensional input i.e., simultaneously 

with LDA will outperform an existing segmentation of the whole amygdala (FreeSurfer 

segmentation). 

 

 

Analyses of hemisphere, sex and age on nucleus volume 

We conducted further analyses to test for the influence of age, hemisphere and sex 

on nuclei volumes in the in vivo test sets (ABIDE and ADNI). We tested for hemispheric 

and sex differences with separate repeated measures ANOVAs with the between-subject 
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factor as group (ASD versus CNT) and the within-subject factors as nucleus (La, Ba, AB, 

Ce, Me, Co, CAT, AAA, PL), hemisphere (left, right), or sex (male, female). ICV was 

added as a covariate to all ANOVAs.  To test for the influence of age on nucleus volume 

we conducted partial correlations with ICV as a covariate for both test datasets. We used 

Fisher’s r to z transformations to test for differences in between-group correlations. 

Given the absence of hemispheric differences (see Results) nuclei volumes were 

averaged over both hemispheres. To control for multiple comparisons, p values were 

corrected for the number of nuclei i.e. an adjusted p value of .0055 (.050/9) in post-hoc 

tests or correlations. 

 



	 14	

RESULTS 

	
Inter-rate reliability and volume of nuclei from ex vivo manual labeling 

We labeled 10 postmortem cases based on the boundaries of nine nuclei that were clearly 

visible on the high resolution ex vivo images collected at 7 T (Figure 1).  Inter-rater 

reliability was calculated as the Dice coefficient (overlapping voxels between the two 

independently labeled cases divided by the union of voxels) (Dice, 1945).  Two 

individuals (Z.M.S., D.K., and E.B.) labeled case #1 in its entirety and the reliability was 

quite high: La 0.85; AB 0.76; Ba 0.73; Me 0.68; Ce 0.60; CAT 0.59; AAA 0.46; Co 0.44; 

PL 0.41; (Figure 2). All other cases were labeled in their entirety by one individual, and 

18 slices (6 contiguous posterior, 6 contiguous middle, and 6 contiguous anterior slices) 

of each case were labeled by the other two labelers to calculate inter-labeler overlap 

measurements of all three labelers for each case (Dice coefficient mean ± se across all 

cases: La 0.83 ±0.02; AB 0.73 ±0.02; Ba 0.73 ±0.02; Me 0.34 ±0.06; Ce 0.54 ±0.03; 

CAT 0.61 ±0.03; AAA 0.38 ±0.06; Co 0.45 ±0.05; PL 0.35 ±0.04).   

Coronal slices (Figure 1) were mainly used to determine labeling but sagittal and 

axial views were also used to visualize the borders and were especially useful for the Me, 

Ce, and Co nuclei due to their elongated shape in these views (Figure 2).  The 3-

dimensional rendering of one of the ex vivo cases illustrates the oblong versus spherical 

shapes of nuclei in different orientations, and also illustrates how intertwined some of 

these nuclei are (AB and Ce; CAT and Me; Figure 4).   It also captures the differences in 

volume between the nuclei, with La, Ba, AB, and CAT occupying most of the 

amygdala’s volume.   Table 3 details the mean volume of each nucleus for all fully-

labeled cases (ten cases).    

 
Atlas generation and applications to in vivo MRI 

An atlas was generated from the post-mortem manual labels (see Methods) and applied 

to standard in vivo MR images in two public datasets: ADNI and ABIDE.  These scans 

were acquired with MPRAGE sequences at 1 mm isotropic resolution. The MRI data 

were processed through the standard FreeSurfer pipeline (Fischl et al., 2002, Fischl et al., 

2004), including the current automated amygdala segmentation, which is useful to 
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compare the segmentations yielded by the in vivo atlas of the whole amygdala with those 

produced by the ex vivo atlas we are introducing here. The resulting segmentations from 

the ex vivo atlas were not manually edited.   

 
ADNI dataset:  

We calculated how well the ex vivo based segmentations discriminate AD from control 

cases based on nucleus volume.  Accuracy and area under the curve (AUC) were 

computed in a leave one out manner (all analyses were corrected for age, sex, and ICV).  

The ex vivo atlas was highly accurate at discriminating between AD and control 

participants; using the sum of the amygdala nuclei volumes as the discriminating feature 

yielded 81.46% accuracy (AUC=0.83; p = 7.65 × 10-41 AD vs. control), and significantly 

outperformed the whole-amygdala atlas in FreeSurfer v5.1 (Paired DeLong test for AUC 

of new atlas vs. FreeSurfer v5.1: p = 1.8 × 10-6).  Using all the amygdala nuclei volumes 

simultaneously from the current study was also highly accurate in discriminating AD vs. 

controls, with 84.07% accuracy (AUC = 0.9154; p = 2.80 × 10-44) and offered significant 

improvement in discrimination as compared to i) using the previous FreeSurfer atlas 

(DeLong test p = 9.×10-6) and ii) using the sum of all nucleus volumes from the current 

atlas (DeLong test p = 1.6 ×10-2) (see Table 4).   

 

ABIDE dataset: 

We also applied the ex vivo segmentation atlas to another public dataset of autism and 

control participants (ABIDE; Figure 5) and calculated discriminability based on nucleus 

volume.  Neuroimaging differences and effect sizes are notoriously quite small in the 

ASD literature. We wanted to know i) how well amygdala nucleus volumes would be 

able to discriminate between ASD and control participants and ii) whether the 

discrimination performance would be significantly better than using the whole amygdala 

(the sum of all nuclei volumes derived by the atlas) and better than the whole amygdala 

volume from the standard FreeSurfer segmentation. Accuracy and AUC were computed 

in exactly the same way as the ADNI dataset; and note that we did not control for age as 

a nuisance regressor, given that groups were well matched on this variable.  The previous 

FreeSurfer atlas failed to discriminate between ASD vs. controls (p = 0.16 with 54.05% 
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accuracy and AUC = 0.449; Table 5).  In contrast, the ex vivo atlas was significantly 

accurate at discriminating between ASD and controls when using all the nuclei 

simultaneously (p = .0122), but not when using the sum of all the nuclei volumes (p = 

0.078; see Table 5 for accuracy and AUC).  Using all nuclei simultaneously yielded 

59.46% accuracy and AUC = 0.5902, offering substantial improvement in discrimination 

as compared to i) using the whole amygdala volume from FreeSurfer’s automatic 

segmentation (DeLong test p = 1.7e-02) and ii) using the sum of all nucleus volumes 

from the current atlas (DeLong test p = 9.1e-03).  The difference in AUC between the 

whole amygdala using FreeSurfer 5.1 or the aggregate volume of the nuclei was not 

significant (DeLong test p = 0.65). Therefore, despite the lack of contrast in the internal 

boundaries of the amygdala, the volumes of the nuclei carry additional information that is 

not present in the volume of the whole amygdala. 

 

Additional analyses of hemisphere, sex, and age: 

Hemispheric differences in nuclei volumes 

The repeated measures ANOVAs (with a between-subject factor of group: ASD 

or ALZ vs. CNT, and within-subject factors of hemisphere: left vs. right and nucleus: La, 

Ba, AB, Ce, Me, Co, CAT, AAA, PL) showed no main effect of hemisphere or 

interactions of hemisphere with nucleus for both in vivo test datasets (main effect of 

hemisphere: ABIDE: p > .3, ADNI: p > .06; interactions with hemisphere and nucleus: 

ABIDE: p > .5, ADNI p > .23).  

Although not central to our main question of whether nuclei are influenced by 

hemispheric differences, here we also report the full ANOVA results for the sake of 

completeness. For the ADNI dataset, there were main effects of nucleus (F(1.3,380) = 23.42, 

p = 1.7x10-7, η = .058, Greenhouse-Geisser corrected), group (F(1.,380) = 282.2, p = 9.2x10-

48, η = .43) as well as a significant interaction of nucleus and group (F(1.3,380) = 193.2, p = 

5.2x10-44, η = .34, Greenhouse-Geisser corrected), further replicating our initial 

prediction analyses above.  The influence of the covariate was significant (F(1.3,380) = 98.6, 

p = 8.2x10-22, η = .21), and interacted with hemisphere (F(1,380) = 6.69, p = .01, η = .017, 

Greenhouse-Geisser corrected) and nucleus (F(1.3,380) = 89.05, p = 3.1-23, η = .19, 

Greenhouse-Geisser corrected).  
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For the ABIDE dataset, there were main effects of nucleus (F(1.4,256) = 211.3, p = 

6.5x10-47, η = .45, Greenhouse-Geisser corrected), the covariate ICV (F(1,256) = 101.96, p = 

2.1x10-20, η = .29) and a significant interaction of nucleus and ICV (F(1,256) = 85.7, p = 

1.5x10-122, η = 85.6, Greenhouse-Geisser corrected).  

 

Sex differences in nuclei volumes 

In the ADNI dataset, a repeated measures ANOVA (with between-subject factors 

of group: ASD vs. CNT and sex, within-subject factor nucleus, covariate ICV) revealed a 

significant main effect of sex (F(1.3) = 9.3, p = .003, η = .02, Greenhouse-Geisser 

corrected), as well as a significant interaction of sex and nucleus (F(1.3) = 9.4, p = 9.8-4, η 

= .02, Greenhouse-Geisser corrected). Post-hoc one-way ANOVAs testing sex 

differences for each nucleus separately, while controlling for ICV as a covariate, showed 

differences between hemispheres only in La (F(1.382) = 11.6, p = .0018, η = .025, corrected 

for multiple comparisons). All remaining nuclei showed trends towards greater nuclei 

volume in males (AAA: p = .028, AB: p = .027, Ba: p = .020, CAT: p = .036,  Ce: .13, 

Me: p = .055, Co: p = .017, PL: p = .022). 

There were main effects of nucleus (F(1.3,380) = 32.8, p = 5.8x10-10, η = .08, 

Greenhouse-Geisser corrected), group (F(1.,380) = 282.5, p = 9.2x10-48, η = .43) and a 

significant interaction of nucleus and group (F(1.3,. 380) = 193.4, p = 3.1x10-44, η = .34, 

Greenhouse-Geisser corrected), again replicating our initial prediction analyses above. 

The influence of the covariate was significant (F(1.3,380) = 38.8, p = 1.3x10-9, η = .09), and 

interacted with nucleus (F(1.3,380) = 33.5 p = 3.8x10-10 η = .081, Greenhouse-Geisser 

corrected).  

Given the very small number of females in the matched ABIDE dataset (ASD: n 

= 16, CNT: n = 18) we did not test the influence of sex in the ABIDE dataset. 

 

The influence of age on nuclei volume 

For the ADNI dataset, partial correlations, controlling for ICV, revealed a 

multiple comparison corrected significant influence of age on almost all nuclei separately 

in each group and over both groups. Overall, volume declined with age (see Table 6).  
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For the ABIDE dataset, AB, CAT, PL and Co were significantly correlated with 

age over both groups, while controlling for ICV. This effect was also present in three of 

those nuclei in the ASD group (AB, CAT, Co), but no analyses passed multiple 

comparison correction in the control group (see Table 6).  

There were no significant differences in the relationship between nuclei volume 

and age between the groups for either dataset (after correction for multiple comparisons; 

see Table 6). 

 

DISCUSSION 
Here, we show that we can visualize the boundaries of 9 amygdala nuclei using 

high resolution ex vivo MRI data. The nuclei were consistent across cases and raters. 

Manual labeling of these nuclei in ex vivo MRI data served as a basis to construct a 

statistical atlas of the amygdala at the nucleus level.  This amygdala atlas was applied to 

in vivo MRI data in two publicly available datasets (ADNI and ABIDE). We thus 

determined whether the atlas could be used to segment the amygdala nuclei in standard 

resolution T1 data of varying MR contrast. In addition this application showed how well 

the resulting segmentations could discriminate between Alzheimer’s disease participants 

vs. control participants (ADNI dataset), and individuals with autism and age-matched 

controls (ABIDE dataset). We plan to incorporate the ex vivo amygdala nuclei atlas as 

part of the publicly available FreeSurfer software in the next release, thus opening up 

numerous multimodal applications in typical and atypical populations and allowing 

researchers to explore the amygdala nuclei’s function and structure with greater 

specificity than previously possible in neuroimaging. 

The amygdala is an important structure for animal and human cognition and 

serves as a crucial hub for cortical, subcortical and limbic connections throughout the 

brain. Extensive research from the animal literature and post-mortem human studies show 

that the amygdala is composed of several neuronal subpopulations (Freese and Amaral, 

2005, 2006, 2009; Alheid, 2003; Price et al., 1987; Aggleton, 2000; Gloor, 1972, 1978, 

1997; McDonald, 1998; LeDoux, 1998), however the precise functions thereof remain yet 

to be defined in detail in humans. 
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Currently, no in vivo parcellation methods available allow for an automated 

segmentation of nine amygdala nuclei derived from underlying anatomy and within 

standard imaging protocols. Previous studies have used in vivo imaging where the 

resolution did not reveal numerous amygdala nuclei, parcellating the amygdala into 2-4 

regions (e.g. Entis et al., 2012; Solano-Castiella et al. 2011). T1 weighted scans of 

standard resolution (0.75-1 mm voxel size) do not provide sufficient overall image 

contrast for the human eye to distinguish the amygdala nuclei.  Amygdala segmentation 

from diffusion weighted imaging data is possible, but again, the nuclei are usually 

grouped into larger subregions (e.g. basolateral instead of basal and lateral nuclei 

separately; Saygin et al. 2011, Bach et al. 2011). Compared with approaches that aim for 

estimating probability maps in reference spaces (e.g., Amunts et al., 2005, Solano-

Castiella et al., 2010, 2011, Tyszka et al., 2016), the presented approach takes individual 

underlying anatomy into account, thus providing greater spatial sensitivity. 

The present study offers four main innovations and advantages over previous 

work: i) higher (100-150µm isotropic) resolution and because of this high resolution ii) 

the largest number of amygdala nuclei resolved, labeled, and then modeled (nine nuclei), 

iii) an atlas based on n=10 cases thus allowing variability to be modeled across cases, and 

iv) the use of a recent modeling technique (Iglesias et al. 2015) that enables the inclusion 

in the atlas of large amounts of readily available in vivo segmentations of the whole 

amygdala. In particular, the generative nature of this model makes it agnostic to details of 

the imaging contrast, and hence permits the use of ultra-high-resolution, ex vivo training 

data. This is in contrast with techniques that require intensity matching between training 

and test data, which essentially forces the training data to be in vivo and thus of 

significantly lower resolution and overall image contrast.  

In conventional probabilistic atlases defined in the space of a template brain, the 

usual procedure is to register the grayscale template to a test scan, and use the resulting 

transform to propagate the label probabilities. In contrast, for atlases based on generative 

models like the one presented here, the registered atlas only represents a prior, which is 

combined with a subject-specific likelihood model (agnostic to MRI contrast) to produce 

a posterior distribution that yields the segmentation in that individual’s native space. 

Therefore, the method is adaptive to any MRI contrast, and since the prior and likelihood 
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inform each other’s updates, it can generate sharper segmentations based on the posterior 

rather than the prior alone. 

The atlas introduced in the current paper is easily applicable to standard 

anatomical MR data and will be implemented in a future release of the FreeSurfer 

software. FreeSurfer is an open source and widely used brain data analysis software and 

we intend that the new atlas will significantly impact future studies in advancing our 

understanding of amygdala nuclei function in the human brain.  

Compared with approaches that aim for estimating probability maps in reference 

spaces (e.g., Amunts et al., 2005, Solano-Castiella et al., 2010, 2011), the present 

approach takes individual underlying anatomy into account, thus providing greater spatial 

sensitivity.  While these previous studies contributed slightly larger sample sizes, the 

present study harnesses recent advancements in probabilistic modeling (i.e. Bayesian 

modeling) to take into account individual anatomy in order to parcellate the nuclei of the 

amygdala. Future work may also quantitatively compare the present atlas to other atlases 

that segment groups of nuclei (rather than individual nuclei as in the present atlas) in 

order to decide on the best atlases for different research questions.  It is important to note 

that such comparisons of different atlases will depend heavily on the quality of the 

registration, which can be greatly compromised by differences in image contrast between 

the input atlases.  When the registration of these template-space atlases is poor, it leads to 

poor overlap between the subregions segmented by different atlases and in different 

spaces (i.e. native subject space vs. template/group space).   

Here, we also show that the new information about amygdala nuclei derived by 

the atlas can reliably distinguish between pathologic and normal anatomy in two separate 

populations, with higher accuracy than the volume of the whole amygdala. For the ADNI 

comparison, we expected gross anatomical differences between the pathological and the 

control group, given the neuropathology in AD and MCI (Merkesbery, 2010; Yilmazer-

Hanke, 1998). In contrast, we expected rather small (if any) differences for the ABIDE 

group comparison. The exact structural neuropathology of the amygdala is less clear in 

ASD and there have been heterogeneous findings about the amygdala as a whole 

structure (e.g. Dziobek et al., 2010; Sparks et al., 2002).  ASD is a very heterogeneous 

disorder clinically, and thus probably has a heterogeneous and complicated underlying 
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biology. Crucially, the accuracies of group discriminations based on the new atlas 

outperformed previously available results based on the amygdala as a whole in both the 

ADNI dataset (p = 1.1×10-5) and the ABIDE dataset (p = .008). Although the accuracy in 

the ABIDE comparison is not very high overall, using the current atlas still results in a 

significant improvement of discrimination accuracy. Moreover, the finding that the ASD 

discrimination is lower in accuracy than the Alzheimer’s discrimination is another 

important aspect of the present analysis. Whereas the ADNI comparison extends previous 

findings of volumetric differences in the amygdala between AD and age-matched control 

participants, the findings in ASD show the potential for future research applications: 

using information about anatomical changes in amygdala nuclei in relation to behavioral 

characteristics can be more sensitive than the amygdala as one homogenous structure. We 

anticipate that this new tool will support neuroimaging researchers to find replicable and 

robust differences between ASD and controls with greater accuracy than possible based 

on the whole amygdala. We provide these results as an example of one potential 

application to a clinical population with less clear neuropathology and encourage other 

researchers to test and extend this finding in different ASD and other psychiatric samples 

respectively. For example, the estimation and definition of individual amygdala nuclei (or 

grouped into other meaningful subdivisions e.g. basolateral/centromedial complex) can 

serve as regions of interest for task-related functional MRI studies; and/or as seed regions 

for connectivity analyses in task-free fMRI data.  

The additional exploratory analyses on the influence of hemisphere, sex, and age 

on nucleus volume in the in vivo datasets emphasizes the importance of careful matching 

of groups with respect to age and sex when comparing different groups (especially in 

older adult samples). Previous studies that have segmented the amygdala as a whole are 

discrepant, with some groups reporting larger right amygdala (e.g. Pedraza et al. 2002, 

Bernesconi N et al., 2003) or no asymmetry (Goncalves-Pereira PM et al., 2006).  The 

absence of a hemispheric difference in the two datasets in the present study is informative 

and has implications for further investigations (e.g., volumes can be averaged), but in 

light of previous literature, future studies should carefully check for hemispheric 

differences. Another potential application could be to study volumetric and connectivity 

changes across development. For example, a recent study revealed that the connectivity 
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of most amygdala subregions (central, basal, and lateral) continued to change between the 

ages of 5-30 (Saygin et al. 2015).  However, these regions were identified based on a 

connectivity atlas (Saygin et al. 2011) and the study was limited to coarser subdivisions 

of the amygdala.  The structural (e.g. volume or connectivity) and functional 

developmental trajectory of the nine nuclei identified here remains to be explored. 

Some limitations of the present study are that we did not label subdivisions of the 

amygdala nuclei (i.e. the ventral, dorsal, medial, lateral parts of each nucleus) and we did 

not label the “extended amygdala” in the ten cases.  The medial and central nuclei are 

sometimes included as part of the extended amygdala, so perhaps we included part of the 

extended amygdala; others think such nuclei are part of the basal ganglia because of their 

inhibitory nature (Heimer & van Hoesen 2006; Olmos & Heimer, 1999; Cassell 1999, 

Swanson et al., 1998).  It is also worth noting that different groups distinguish the central 

nucleus’ boundaries quite differently; this discrepancy may be due to the two nuclei of 

the central nucleus (dorsomedial and ventrolateral), which are stained quite differently 

(described in Gloor (1978) on page 624). Amunts and colleagues included a larger central 

nucleus parcellation likely to underscore the extended amygdala concept in this region 

(Amunts et al., 2005).  Here we predominantly label the medial portion of the central 

nucleus (i.e. dorsomedial), which would agree with many definitions of the central 

nucleus (Freese & Amaral, 2009) rather than the lateral portion of the central nucleus (i.e. 

ventrolateral), where some myelinated fibers separate it from the main mass of the 

amygdala.  These differences between nucleic definitions among different groups will 

also be important to consider when directly comparing different atlases. The diversity of 

the amygdala nuclei with respect to its structure, function and connectivity  - has been 

long debated. Future studies can clarify the roles of the different nuclei as part of the 

amygdala, ventral pallidum, basal forebrain, or hippocampus.     

 

CONCLUSION 
In this paper, we visualized nine amygdala nuclei boundaries (anterior amygdaloid area, 

cortico-amygdaloid transition areas; basal, lateral, accessory basal, central, cortical 

medial, paralaminar nuclei) using ultra-high-resolution ex vivo imaging.  The nuclei were 

consistent across cases and raters, and the resulting atlas will be distributed in the 
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FreeSurfer software. The amygdala nuclei atlas was applied to two datasets, 

demonstrating a higher discriminability of Alzheimer’s disease and Autism Spectrum 

Disorder than previously possible with amygdala segmentation methods. This amygdala 

atlas will provide neuroimaging researchers with the ability to test nucleus’ function in 

vivo with greater spatial specificity in the human brain.  
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Figure legends 
 
Figure 1.  Coronal images from MRI of example ex vivo (case 7). The boundaries of 
nine amygdala nuclei were  clearly visible on the left column and were used to hand-label 
the nuclei. Resulting nuclei labels illustrated on the right column.  Slices extend from 
anterior to posterior amygdala (from top to bottom panels).  La: lateral; Ba: basal; AB: 
accessory basal; Ce: central; Me: medial; Co: cortical; CAT: Cortico-amygdaloid 
Transition Area; AAA: Anterior Amygdala Area; PL: paralaminar nucleus; Ot: optic tract 
(as landmark). 
 
Figure 2. Inter-rater comparison of nucleus labels (case 1). Another example ex vivo 
case depicting the MRI contrast without any labels (left column) and with the manually-
labeled nuclei produced by the two raters (middle and right columns).  The location and 
spatial extent of the nuclei were similar between the two independent raters. Labels were 
based mainly on boundaries visible on coronal slices, but the two other orientations (axial 
and sagittal) were especially useful for checking boundaries of nuclei that were elongated 
in those orientations such as Co, CAT, Ce, and Me nuclei.  
 
Figure 3. Coronal section of probabilistic atlas, with (A) and without 
(B)  tetrahedral mesh superimposed. The color of each voxel is a combination of the 
colors of the different labels, weighted by the corresponding probabilities at each 
location. Different colors represent specific nuclei: green: Me, dark blue: CAT, orange: 
AB, red: Ba, purple: Ce off-white: Co yellow: AAA, light blue: LA, turquoise: PL. 
 
Figure 4. 3-Dimensional rendering of manual segmentation based on MRI in one ex 
vivo case. (A) anterior, (B) medial-lateral, (C) posterior , (D) coronal view. Different 
colors represent specific nuclei: green: Me, dark blue: CAT, orange: AB, red: Ba, purple: 
Ce off-white: Co yellow: AAA, light blue: La, turquoise: PL. For display purposes label 
boundaries are smoothed (5). 
 
Figure 5. In vivo segmentations of amygdala nuclei overlaid on standard T1-
weighted anatomical MR image (from ABIDE dataset). (A) Coronal, (B) sagittal, and 
(C) axial views.  Panel A illustrates the MR image without any nuclei in order to 
visualize contrast quality. Different colors represent specific nuclei: green: Me, dark blue: 
CAT, orange: AB, red: Ba, purple: Ce, off-white: Co, yellow: AAA, light blue: La. 
 
 
 
 
 

 













Table 1: Basic demographics and diagnostic information about brain samples used 

in this study. Abbreviations: AD, Alzheimer’s disease; h, hours, m, male; f, female; 
PMI, post-mortem interval; n/a, data not available 

 

Case # Sex Age Laterality Isotropic 

Resolution 

(μm) 

Clinical 

Diagnosis 

Neuropathology 

Diagnosis 

PMI 

1 n/a n/a left 150 control control < 24h 

2 m 60 right 100 control control < 24h 

3 f 86 left 100 mild AD mild AD 18h 

4 m 68 right 100 control control < 24h 

5 m n/a left 120 control control < 24h 

6 f 83 left 120 control control 6h 

7 m 63 left 120 control control < 24h 

8 m 60 right 100 control control 14h 

9 m 68 right 100 control control <24h 

10 m 58 right 100 control control <24h 

 



Table 2. Overview of anatomical boundaries and landmarks for the manual labeling 
protocol.  
 
Structure Abbreviation  Definition 

Anterior 
Amygdala 
Area 

AAA 
(yellow) 

The AAA represents the anterior end of the amygdala. 
AAA borders CAT anteriorly and laterally and has a 
concave crescent shape. In its most posterior and lateral 
position, AAA detaches from the rest of the amygdala and 
extends until striatal tissue becomes visible. AAA appears 
as a bright band anteriorly, similar to striatal tissue but 
AAA is more medial. 

Cortico-
amygdaloid 
Transition 
Area 

CAT 
(dark blue) 

The CAT represents the medial border of the amygdala. 
Laterally CAT borders AAA, AB, Ba, PL and Ce along its 
anterior-posterior extent. The posterior portion of CAT is 
inferior to the medial nucleus. CAT’s ventral border 
merges into the hippocampal-amygdala transition area 
(HATA) posteriorly.  Occasionally, the CAT showed poor 
contrast at its anterior borders. 

Lateral 
Nucleus  

La 
(blue) 

In the anterior portion of the amygdala, the La is typically 
the first nucleus to appear. Scrolling anterior-posterior in 
the coronal plane, the La transforms from a circular/oval 
shape into a wedge or triangular shape. The La’s medial 
border remains next to the Ba along the entire amygdala. 
The anterior La borders AAA, rostrally and laterally. The 
La continues laterally and dorsally until the posterior end 
of the amygdala. La is by far the largest nucleus of the 
amygdala, and reveals excellent contrast in all cases. 

Basal 
Nucleus 

Ba 
(red) 

The anterior appearance of the Ba follows its lateral 
neighboring nuclei (La) and borders La throughout the 
amygdala.	When viewed in coronal plane, Ba is circular 
anteriorly, then progresses into an L-shape midway, and 
ends circular. 

Paralaminar 
Nucleus 

PL 
(turquoise) 

The PL is a small, light band that is inferior to Ba, lateral 
to CAT, and ventro-medial to part of the La. PL borders 
Ba and La and remains until the last few slices while 
transitioning more medially towards the CAT and AB. 

Accessory 
Basal 

AB 
(orange) 

From anterior to posterior coronal slices, the AB emerges 
medially from/within the Ba in a circle that transforms 
into an oval shape. Dorsally, it forms an obtuse angle with 
Ba. Medially, the AB borders CAT, while its dorsal 
portion borders Ce in most of our cases.  

Medial Me 
(green) 

The Me emerges near the optical tract and can be visible 
along most of the anterior-posterior extent of the 
amygdala. The Me covers most of the lateral-dorsal 
boundary of CAT. This nucleus is the most variable in 
shape, being either elongated and slim or more circular in 
coronal view. The axial view is useful in verifying the 
borders of this nucleus. 

Central Ce  
(purple) 

The Ce appears circular and dorsal to AB and is between 
CAT medially and Ba laterally. For about half the cases, 
the Ce remains a circular shape, and for the other half of 



the cases, it becomes progressively more oval. The Ce 
appears brighter than its surrounding tissue.  The axial 
view is useful in verifying the borders of this nucleus.  

Cortical Co 
(off white) 

The Co emerges as a small circular nucleus, dorsally to 
CAT. The AB borders Co laterally. Overall, the Co was 
the smallest nucleus in size and contains the fewest 
number of slices labeled in our atlas. 

 
 
 
 
 
 



Table 3. Mean volume of ex vivo nuclei across all cases used to create the atlas 
(mean mm3 +/ se) 
 

 

 
 

 

 
 

	
 

 

La 453.5 ± 31.4 
Ba 300.9 ± 19.2 
Ce 32.5 ± 7 
Me 21.8 ± 5.6 
Co 16.4 ± 3 
AB 171.6 ± 16.9 
CAT 174.8 ± 17.3 
AAA 39.8 ± 7.9 
PL 31.9 ± 6.4 



Table 4. Accuracy and area under the curve results for discriminating AD vs. 

controls in ADNI dataset. 

Volumes used as input Accuracy at 

elbow 

AUC p-value AD 

vs. controls 

Volume of whole amygdala from 

main FreeSurfer stream (“aseg”,  

v5.1) 

74.94% 0.844 5.68×10-31 

Volume of whole amygdala,   

(adding together the volumes of all 

nuclei, estimated with the new atlas)  

81.46% 0.898 7.65×10-41 

Volumes of all 9 amygdala nuclei 

estimated with the new atlas, used 

simultaneously with LDA 

84.07% 0.915 2.80×10-44 

 

 

 

 

 

 

 



Table 5. Accuracy and area under the curve for discriminating ASD vs. controls in 

ABIDE dataset. 

Volumes used as input Accuracy 

at elbow 

AUC p-value ASD 

vs. controls  

Volume of whole amygdala from main 

FreeSurfer stream (“aseg”,  v5.1) 

54.05% 0.4494 0.1605 

Volume of whole amygdala,   

(adding together the volumes of all nuclei, 

estimated with the new atlas) 

55.21% 0.4367 0.0544 

Volumes of all 9 amygdala nuclei estimated 

with the new atlas, used simultaneously with 

LDA 

59.46% 0.5902 0.012 

 

 



Table 6. Correlation of age and nuclei volume per in vivo dataset (ADNI, ABIDE) 

for all subjects, disease group, control group and comparing correlations between 
groups. Abbreviations: Ncl., nucleus; p, significance value; r, Pearson’s correlation 

coefficient. 
 

  all subjects disease group control 

group 

group differences 

in vivo  Ncl. p r p r p r p Fisher’s z 

 

ADNI AAA 4.9x10-5 -.206 5.7x10-5 -.306 2.3x10-5 -.285 .826 -.22 

AB 5x10-6 -.232 8.8x10-5 -.299 2.5x10-11 -.436 .103 1.63 

Ba 4.6x10-5 -2.08 2.1x10-5 -.323 7.5x10-7 -.331 .928 .09 

CAT 3.9x10-4 -.181 .01 -.198 1.7x10-7 -.348 .116 1.57 

Ce 1.3x10-5 -.221 3.3x10-5 -.316 4.7x10-8 -.363 .61 .51 

Co 4x10-6 -.232 4.6x10-4 -.268 7.9x10-9 -.382 .219 1.23 

La 8.2x10-7 -.249 3.3x10-5 -.315 1.5x10-7 -.350 .703 .38 

Me .002 -.157 .211 -.097 7x10-6 -.302 .039 2.07 

PL 8.6x10-4 -.170 3.0x10-5 -.317 .007 -.183 .168 -1.38 

 

ABIDE AAA .745 .02 .879 .014 .813 .021 .745 .020 

AB .001 -.211 .002 -.238 .116 -.139 .001 -2.11 

Ba .019 -.146 ..056 -.169 .160 -.124 .019 -.146 

CAT 3.6x10-4 -.220 .003 -.257 .035 -.186 3.6x10-4 -.220 

Ce .097 -.104 .012 -.221 .457 .066 .097 -1.04 

Co .003 -.186 .002 -.267 .340 -.085 .003 -1.86 

La .828 -.014 .541 -.054 .604 .046 .828 -.014 

Me .606 -.032 .103 -.145 .119 .138 .606 -.032 

PL .003 -.183 .020 -.205 .070 -.160 .003 -.183 

	


