27 research outputs found

    Regulation of Adrenomedullin and its Family Peptide by RAMP System - Lessons from Genetically Engineered Mice

    Get PDF
    Adrenomedullin (ADM), originally identified as a vasodilating peptide, is now recognized to be a pleiotropic molecule involved in both the pathogenesis of cardiovascular diseases and circulatory homeostasis. Homozygotes of ADM knockout mice (ADM-/-) were lethal at mid-gestation with abnormalities of vascular development and this finding clarified the angiogenic potency of ADM. Calcitonin gene-related peptide (CGRP), which has a structure and function similar to that of ADM, has been identified as a family peptide of ADM. Unlike ADM-/-, CGRP-/- were apparently normal. Therefore, the study of knockout mice first clarified the distinctly different physiological roles between ADM and CGRP. In contrast, heterozygotes of ADM knockout mice (ADM+/-) were alive but showed blood pressure elevation, reduced neovascularization, and enhanced neointimal formation by arterial injury. Based on these observations, there was hope ADM would have a therapeutic use. However, ADM has a short half-life in the blood stream and its application in chronic disease has limitations. Therefore, we focused on the ADM receptor system. The calcitonin-receptor-like receptor (CLR), which is the ADM receptor, associates with one of the accessory proteins, called receptor activity-modifying proteins (RAMPs). By interacting with RAMP1, CLR exhibits a high affinity for CGRP, whereas by interacting with either RAMP2 or -3, CLR exhibits a high affinity for ADM. We generated RAMP knockout mice and found that vascular phenotypes similar to ADM-/- were reproduced only in RAMP2-/-. This shows that RAMP2 is the key determinant of the vascular functions of ADM. RAMP2 could be an attractive therapeutic target in cardiovascular diseases.ArticleCURRENT PROTEIN & PEPTIDE SCIENCE. 14(5):347-357 (2013)journal articl

    Endogenous CGRP protects against neointimal hyperplasia following wire-induced vascular injury

    Get PDF
    信州大学博士(医学)・学位論文・平成25年3月31日授与(甲第942号)・楊 磊Neointimal hyperplasia is the primary lesion underlying atherosclerosis and restenosis after percutaneous coronary intervention. Calcitonin gene-related peptide (CGRP) is produced by alternative splicing of the primary transcript of the calcitonin/CGRP gene. Originally identified as a strongly vasodilatory neuropeptide, CGRP is now known to be a pleiotropic peptide widely distributed in various organs and tissues. Our aim was to investigate the possibility that CGRP acts as an endogenous vasoprotective molecule. We compared the effect of CGRP deficiency on neointimal formation after wire-induced vascular injury in wild-type and CGRP knockout (CGRP-/-) mice. We found that neointimal formation after vascular injury was markedly enhanced in CGRP-/- mice, which also showed a higher degree of oxidative stress, as indicated by reduced expression of nitric oxide synthase, increased expression of p47phox, and elevated levels of 4HNE, as well as greater infiltration of macrophages. In addition, CGRP-deficiency led to increased vascular smooth muscle cell (VSMC) proliferation within the neointima. By contrast, bone marrow-derived cells had little or no effect on neointimal formation in CGRP-/- mice. In vitro analysis showed that CGRP-treatment suppressed VSMC proliferation, migration, and ERK1/2 activity. These results clearly demonstrate that endogenous CGRP suppresses the oxidative stress and VSMC proliferation induced by vascular injury. As a vasoprotective molecule, CGRP could be an important therapeutic target in cardiovascular disease. (C) 2013 Elsevier Ltd. All rights reserved.ArticleJOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY. 59(0):55-66 (2013)journal articl

    Adrenomedullin in sinusoidal endothelial cells play protective roles against cold injury of liver

    Get PDF
    Donor organ damage caused by cold preservation is a major problem affecting liver transplantation. Cold preservation most easily damages liver sinusoidal endothelial cells (LSECs), and information about the molecules modulating LSECs function can provide the basis for new therapeutic strategies. Adrenomedullin (AM) is a peptide known to possess anti-apoptotic and anti-inflammatory properties. AM is abundant in vascular endothelial cells, but levels are comparatively low in liver, and little is known about its function there. In this study, we demonstrated both AM and its receptors are expressed in LSECs. AM treatment reduced LSECs loss and apoptosis under cold treatment. AM also downregulated cold-induced expression of TNF alpha, IL1 beta, IL6, ICAM1 and VCAM1. AM reduced apoptosis and expression of ICAM1 and VCAM1 in an in vivo liver model subjected to cold storage. Conversely, apoptosis was exacerbated in livers from AM and RAMP2 (AM receptor activity-modifying protein) knockout mice. These results suggest that AM expressed in LSECs exerts a protective effect against cold-organ damage through modulation of apoptosis and inflammation.ArticlePEPTIDES. 31(5):865-871 (2010)journal articl

    Induction of LYVE-1/stabilin-2-positive liver sinusoidal endothelial-like cells from embryoid bodies by modulation of adrenomedullin-RAMP2 signaling

    Get PDF
    Embryonic stem cells (ESCs) are a useful source for various cell lineages. So far, however, progress toward reconstitution of mature liver morphology and function has been limited. We have shown that knockout mice deficient in adrenomedullin (AM), a multifunctional endogenous peptide, or its receptor-activity modifying protein (RAMP2) die in utero due to poor vascular development and hemorrhage within the liver. In this study, using embryoid bodies (EBs)-culture system, we successfully induced liver sinusoidal endothelial-like cells by modulation of AM-RAMP2. In an EB differentiation system, we found that co-administration of AM and SB431542, an inhibitor of transforming growth factor beta (TGF beta) receptor type 1, markedly enhanced differentiation of lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1)/stabilin-2-positive endothelial cells. These cells showed robust endocytosis of acetylated low-density lipoprotein (Ac-LDL) and upregulated expression of liver sinusoidal endothelial cells (LSECs)-specific markers, including factor 8 (F8), Fc-gamma receptor 2b (Fcgr2b), and mannose receptor C type 1 (Mrc1), and also possessed fenestrae-like structure, a key morphological feature of LSECs. In RAMP2-null liver, by contrast, LYVE-1 was downregulated in LSECs, and the sinusoidal structure was disrupted. Our findings highlight the importance of AM-RAMP2 signaling for development of LSECs. (C) 2011 Elsevier Inc. All rights reserved.ArticlePEPTIDES. 32(9):1855-1865 (2011)journal articl

    Vascular Endothelial Adrenomedullin-RAMP2 System Is Essential for Vascular Integrity and Organ Homeostasis

    Get PDF
    信州大学博士(医学)・学位論文・平成25年3月31日授与(甲第935号)・小山 晃英Background-Revealing the mechanisms underlying the functional integrity of the vascular system could make available novel therapeutic approaches. We previously showed that knocking out the widely expressed peptide adrenomedullin (AM) or receptor activity-modifying protein 2 (RAMP2), an AM-receptor accessory protein, causes vascular abnormalities and is embryonically lethal. Our aim was to investigate the function of the vascular AM-RAMP2 system directly. Methods and Results-We generated endothelial cell-specific RAMP2 and AM knockout mice (E-RAMP2(-/-) and E-AM(-/-)). Most E-RAMP2(-/-) mice died perinatally. In surviving adults, vasculitis occurred spontaneously. With aging, E-RAMP2(-/-) mice showed severe organ fibrosis with marked oxidative stress and accelerated vascular senescence. Later, liver cirrhosis, cardiac fibrosis, and hydronephrosis developed. We next used a line of drug-inducible E-RAMP2(-/-) mice (DI-E-RAMP2(-/-)) to induce RAMP2 deletion in adults, which enabled us to analyze the initial causes of the aforementioned vascular and organ damage. Early after the induction, pronounced edema with enhanced vascular leakage occurred. In vitro analysis revealed the vascular leakage to be caused by actin disarrangement and detachment of endothelial cells. We found that the AM-RAMP2 system regulates the Rac1-GTP/RhoA-GTP ratio and cortical actin formation and that a defect in this system causes the disruption of actin formation, leading to vascular and organ damage at the chronic stage after the gene deletion. Conclusions-Our findings show that the AM-RAMP2 system is a key determinant of vascular integrity and homeostasis from prenatal stages through adulthood. Furthermore, our models demonstrate how endothelial cells regulate vascular integrity and how their dysregulation leads to organ damage. (Circulation. 2013;127:842-853.)ArticleCIRCULATION. 127(7):842-853 (2013)journal articl

    Receptor Activity Modifying Protein RAMP Sub-Isoforms and Their Functional Differentiation, Which Regulates Functional Diversity of Adrenomedullin

    No full text
    AM knockout (AM-/-) and RAMP2 knockout (RAMP2-/-) proved lethal for mice due to impaired embryonic vascular development. Although most vascular endothelial cell-specific RAMP2 knockout (E-RAMP2-/-) mice also died during the perinatal period, a few E-RAMP2-/- mice reached adulthood. Adult E-RAMP2-/- mice developed spontaneous organ damage associated with vascular injury. In contrast, adult RAMP3 knockout (RAMP3-/-) mice showed exacerbated postoperative lymphedema with abnormal lymphatic drainage. Thus, RAMP2 is essential for vascular development and homeostasis and RAMP3 is essential for lymphatic vessel function. Cardiac myocyte-specific RAMP2 knockout mice showed early onset of heart failure as well as abnormal mitochondrial morphology and function, whereas RAMP3-/- mice exhibited abnormal cardiac lymphatics and a delayed onset of heart failure. Thus, RAMP2 is essential for maintaining cardiac mitochondrial function, while RAMP3 is essential for cardiac lymphangiogenesis. Transplantation of cancer cells into drug-inducible vascular endothelial cell-specific RAMP2 knockout mice resulted in enhanced metastasis to distant organs, whereas metastasis was suppressed in RAMP3-/- mice. RAMP2 suppresses cancer metastasis by maintaining vascular homeostasis and inhibiting vascular inflammation and pre-metastatic niche formation, while RAMP3 promotes cancer metastasis via malignant transformation of cancer-associated fibroblasts. Focusing on the diverse physiological functions of AM and the functional differentiation of RAMP2 and RAMP3 may lead to the development of novel therapeutic strategies
    corecore