22 research outputs found

    Genomic structure and evolution of the mating type locus in the green seaweed Ulva partita

    Get PDF
    The evolution of sex chromosomes and mating loci in organisms with UV systems of sex/mating type determination in haploid phases via genes on UV chromosomes is not well understood. We report the structure of the mating type (MT) locus and its evolutionary history in the green seaweed Ulva partita, which is a multicellular organism with an isomorphic haploid-diploid life cycle and mating type determination in the haploid phase. Comprehensive comparison of a total of 12.0 and 16.6 Gb of genomic next-generation sequencing data for mt− and mt+ strains identified highly rearranged MT loci of 1.0 and 1.5 Mb in size and containing 46 and 67 genes, respectively, including 23 gametologs. Molecular evolutionary analyses suggested that the MT loci diverged over a prolonged period in the individual mating types after their establishment in an ancestor. A gene encoding an RWP-RK domain-containing protein was found in the mt− MT locus but was not an ortholog of the chlorophycean mating type determination gene MID. Taken together, our results suggest that the genomic structure and its evolutionary history in the U. partita MT locus are similar to those on other UV chromosomes and that the MT locus genes are quite different from those of Chlorophyceae

    Genome editing using a DNA-free clustered regularly interspaced short palindromic repeats-Cas9 system in green seaweed Ulva prolifera

    Get PDF
    Although the green seaweed Ulva is one of the most common seaweeds in the coastal regions with well-studied ecological characteristics, few reverse genetic technologies have been developed for it. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system is a simple genome-editing technology based on a ribonucleoprotein (RNP) complex composed of an endonuclease and programmable RNA to target particular DNA sequences. Genome editing makes it possible to generate mutations on a target gene in non-model organisms without established transgenic technologies. In this study, we applied the CRISPR-Cas9 RNP genome-editing system to the green seaweed Ulva prolifera, using polyethylene glycol (PEG)-mediated transfection. Our experimental system disrupts a single gene (UpAPT) encoding adenine phosphoribosyl transferase (APT) and generates a resistant phenotype for gametophytes cultured in a medium with toxic compound 2-fluoroadenine. The PEG-mediated transfection used for gametes resulted in 2-fluoroadenine-resistant strains containing short indels or substitutions on UpAPT. Our results showed that the CRISPR-Cas9 system with PEG-mediated transfection was efficient for genome editing in Ulva

    Isolation and characteristics of Shiga toxin 2f-producing Escherichia coli among pigeons in Kyushu, Japan.

    Get PDF
    An increasing number of Shiga toxin 2f-producing Escherichia coli (STEC2f) infections in humans are being reported in Europe, and pigeons have been suggested as a reservoir for the pathogen. In Japan, there is very little information regarding carriage of STEC2f by pigeons, prompting the need for further investigation. We collected 549 samples of pigeon droppings from 14 locations in Kyushu, Japan, to isolate STEC2f and to investigate characteristics of the isolates. Shiga toxin stx 2f gene fragments were detected by PCR in 16 (2.9%) of the 549 dropping samples across four of the 14 locations. We obtained 23 STEC2f-isolates from seven of the original samples and from three pigeon dropping samples collected in an additional sampling experiment (from a total of seven locations across both sampling periods). Genotypic and phenotypic characteristics were then examined for selected isolates from each of 10 samples with pulsed-field gel electrophoresis profiles. Eight of the stx 2f gene fragments sequenced in this study were homologous to others that were identified in Europe. Some isolates also contained virulence-related genes, including lpfA O26, irp 2, and fyuA, and all of the 10 selected isolates maintained the eae, astA, and cdt genes. Moreover, five of the 10 selected isolates contained sfpA, a gene that is restricted to Shiga toxin-producing E. coli O165:H2 and sorbitol-fermenting Shiga toxin-producing E. coli O157:NM. We document serotypes O152:HNM, O128:HNM, and O145:H34 as STEC2f, which agrees with previous studies on pigeons and humans. Interestingly, O119:H21 was newly described as STEC2f. O145:H34, with sequence type 722, was described in a German study in humans and was also isolated in the current study. These results revealed that Japanese zoonotic STEC2f strains harboring several virulence-related factors may be of the same clonal complexes as some European strains. These findings provide useful information for public health-related disease management strategies in Japan
    corecore