18 research outputs found
Description en espaces de chemins et méthode de Monte Carlo pour les transferts thermiques couplés dans les structures fluides et solides, une approche compatible avec l'informatique graphique
The present manuscript deals with the coupling of thermal heat transfers. More precisely, it adresses this coupling by making use of the Monte Carlo method and the sampling of random paths. This choice was made in the perspective of building algorithms that do not present constraints regarding the complexity of the studied geometry. Indeed, the combined use of this kind of statistical approaches, and acceleration tools coming from the image synthesis community, already allowed for an exact resolution of radiative transfer in arbitrary geometries. Regarding diffusive heat transfers, exact results using random paths are only achievable in academic configurations. Thus, approximate random paths are commonly used to account for this kind of thermal transport. Among the possible choices, we will use random paths built on ray tracing, therefore allowing to benefit once again from all the advantages of the tools developed in computer graphics. A proof of concept of the insensitivity of the computation time of the resolution of thermal transfers in porous exchangers to the number of pores by making use of conducto-convecto-radiative random paths will be presented. Beyond this result, an analysis of the behaviour of this method in ducts heat exchangers will allow to clarify when this kind of insensitivity can indeed be observed. This analysis will induce the concept of thermal thickness, by analogy with optical thickness for radiative transfer.Les travaux preÌsenteÌs dans ce manuscrit abordent la theÌmatique du couplage des transferts thermiques. En particulier, ils sâinscrivent dans une reÌflexion actuelle autour de lâeÌchantillonnage de chemins aleÌatoires par la meÌthode de Monte Carlo. Ce choix est justifieÌ par un souhait dâobtenir des algorithmes ne preÌsentant pas de contraintes sur la complexiteÌ des geÌomeÌtries eÌtudieÌes. En effet, lâutilisation conjointe de ce type dâapproches statistiques et des outils dâacceÌleÌration de la syntheÌse dâimage (grilles acceÌleÌratrices) permet dâores et deÌjaÌ une reÌsolution exacte du transfert radiatif en geÌomeÌtrie quelconque. Pour les transferts thermiques de type diffusif, lâexactitude des approches en espaces de chemins nâest atteignable que pour des configurations simples. On choisit donc dâutiliser des chemins statistiques approcheÌs pour rendre compte de ce type de pheÌnomeÌnes thermiques dans des geÌomeÌtries quelconques. Parmi les choix disponibles, on retiendra des espaces de chemins construits autour du lancer de rayon, qui permettront donc de beÌneÌficier de lâensemble des avantages des outils deÌveloppeÌs par la communauteÌ de lâinformatique graphique. Une preuve de concept de lâinsensibiliteÌ du temps de calcul au nombre de pores de la reÌsolution thermique dâun eÌchangeur poreux par lâutilisation de marches aleÌatoires conducto-convecto-radiatives sera ainsi preÌsenteÌe. Au-delaÌ de ce reÌsultat, une analyse du comportement de la meÌthode sur des eÌchangeurs aÌ canaux permettra de classifier des situations dâinsensibiliteÌ, ou pas, aÌ la complexiteÌ des milieux poreux eÌtudieÌs. La capaciteÌ aÌ expliquer les limites de cette insensibiliteÌ et le comportement de ce temps de calcul fera alors eÌmerger un concept dâeÌpaisseur thermique homologue aÌ la probleÌmatique de lâeÌpaisseur optique en transfert radiatif
Paths description and Monte Carlo method for coupled heat transfer in fluid and solid structures, a computer graphics' compatible approach
Les travaux preÌsenteÌs dans ce manuscrit abordent la theÌmatique du couplage des transferts thermiques. En particulier, ils sâinscrivent dans une reÌflexion actuelle autour de lâeÌchantillonnage de chemins aleÌatoires par la meÌthode de Monte Carlo. Ce choix est justifieÌ par un souhait dâobtenir des algorithmes ne preÌsentant pas de contraintes sur la complexiteÌ des geÌomeÌtries eÌtudieÌes. En effet, lâutilisation conjointe de ce type dâapproches statistiques et des outils dâacceÌleÌration de la syntheÌse dâimage (grilles acceÌleÌratrices) permet dâores et deÌjaÌ une reÌsolution exacte du transfert radiatif en geÌomeÌtrie quelconque. Pour les transferts thermiques de type diffusif, lâexactitude des approches en espaces de chemins nâest atteignable que pour des configurations simples. On choisit donc dâutiliser des chemins statistiques approcheÌs pour rendre compte de ce type de pheÌnomeÌnes thermiques dans des geÌomeÌtries quelconques. Parmi les choix disponibles, on retiendra des espaces de chemins construits autour du lancer de rayon, qui permettront donc de beÌneÌficier de lâensemble des avantages des outils deÌveloppeÌs par la communauteÌ de lâinformatique graphique. Une preuve de concept de lâinsensibiliteÌ du temps de calcul au nombre de pores de la reÌsolution thermique dâun eÌchangeur poreux par lâutilisation de marches aleÌatoires conducto-convecto-radiatives sera ainsi preÌsenteÌe. Au-delaÌ de ce reÌsultat, une analyse du comportement de la meÌthode sur des eÌchangeurs aÌ canaux permettra de classifier des situations dâinsensibiliteÌ, ou pas, aÌ la complexiteÌ des milieux poreux eÌtudieÌs. La capaciteÌ aÌ expliquer les limites de cette insensibiliteÌ et le comportement de ce temps de calcul fera alors eÌmerger un concept dâeÌpaisseur thermique homologue aÌ la probleÌmatique de lâeÌpaisseur optique en transfert radiatif.The present manuscript deals with the coupling of thermal heat transfers. More precisely, it adresses this coupling by making use of the Monte Carlo method and the sampling of random paths. This choice was made in the perspective of building algorithms that do not present constraints regarding the complexity of the studied geometry. Indeed, the combined use of this kind of statistical approaches, and acceleration tools coming from the image synthesis community, already allowed for an exact resolution of radiative transfer in arbitrary geometries. Regarding diffusive heat transfers, exact results using random paths are only achievable in academic configurations. Thus, approximate random paths are commonly used to account for this kind of thermal transport. Among the possible choices, we will use random paths built on ray tracing, therefore allowing to benefit once again from all the advantages of the tools developed in computer graphics. A proof of concept of the insensitivity of the computation time of the resolution of thermal transfers in porous exchangers to the number of pores by making use of conducto-convecto-radiative random paths will be presented. Beyond this result, an analysis of the behaviour of this method in ducts heat exchangers will allow to clarify when this kind of insensitivity can indeed be observed. This analysis will induce the concept of thermal thickness, by analogy with optical thickness for radiative transfer
Couplage conducto-convecto-radiatif par Ă©chantillonnage de chemins : un parallĂšle avec les chemins de multi-diffusions en transfert radiatif
International audienceLa mĂ©thode de Monte Carlo est largement utilisĂ©e pour la simulation du transfert radiatif. De rĂ©cents travaux proposent dâutiliser des algorithmes similaires pour la rĂ©solution des transferts thermiques conducto-convecto-radiatif couplĂ©s. Ces approches statistiques ont pour principal avantage dâĂȘtre rĂ©silients Ă la complexitĂ© gĂ©omĂ©trique, y compris en prĂ©sence de grands rapports dâĂ©chelle en temps et en espace, grĂące aux outils de la synthĂšse dâimage. Cependant, certaines difficultĂ©s sont apparues Ă certaines limites paramĂ©triques au niveau des temps de calcul. Cette Ă©tude sâefforce de faire un parallĂšle entre ces difficultĂ©s et celles rencontrĂ©es pour les fortes Ă©paisseurs optiques dans la rĂ©solution du transfert radiatif par Monte Carlo
Three viewpoints on null-collision Monte Carlo algorithms
International audienceIn 2013, Galtier et al. [1] theoretically revisited a numerical trick that had been used since the very beginning of linear-transport Monte-Carlo simulation: introducing ânullâ scatterers into a heterogeneous field to make it virtually homogeneous.The rigorous connection between null-collision algorithms and integral formulations of the radiative transfer equation led to null-collision algorithms being used in distinct contexts, from atmospheric or combustion sciences to computer graphics, addressing questions that may strongly depart from the initial objective of handling heterogeneous fields (handling large spectroscopic databases, non-linearly coupling radiation with other physics).We briefly describe here some of this research and we classify it by proposing three alternative viewpoints on the very same null-collision concept: an intuitive, physical point of view, called similitude; a viewpoint built on the probability theory, where the null-collision method is seen as rejection sampling; and a more formal writing where the nonlinear exponential function is expanded into an infinite sum of linear terms.By formulating the null-collision concept under three distinct formalisms, our intention is to increase the readerâs awareness of its flexibility.The idea defended and illustrated in this paper is that the ability to explore null-collision algorithms under their different forms has often led to a broadening of the solution space when facing difficult problems, including ones where the Monte Carlo method was consensually considered inapplicable
Toward the use of Symbolic Monte Carlo for Conduction-Radiation Coupling in Complex Geometries
International audienceWe address the interest of using Symbolic Monte Carlo to obtain a reduced model for conduction-radiation coupling in complex geometries. Symbolic Monte Carlo was successfully used for radiative transfer in a decoupled manner, but no attempt has yet been reported to extend its use to radiation coupled with other modes. Here we show that from a unique Monte Carlo simulation of radiation coupled with conduction in a semi-transparent solid surrounded by a convective flow, it is possible to build a formulation of the local temperature as function of the convective heat trans- fer coefficient, for instance, including the evaluation of uncertainty. This reduced model (a transfer function) enables to decrease the computation time when the function needs to be evaluated plenty of times for different values of the parameters as in optimization or control algorithms
Combined conductive-convective-radiative heat transfer in complex geometry using the Monte Carlo method: application to solar receivers
International audienceDeterministic methods are commonly used to solve coupled conductive-convective-radiative systems in threedimensional geometries (3D). With the increasing amount and accuracy of data available, and growing complexity of systems studied, these methods have to deal with endless increases in computation times. This article presents a stochastic method for the simulation of the heat balance equation in solids and fluids with known velocity fields, as well as coupled surface to surface radiative transfers. The construction of the corresponding algorithm is comprehensively detailed and results are compared to deterministic simulations. The presented method uses a Monte Carlo approach and is shown to preserve short computation times for complex geometries
Advection, diffusion and linear transport in a single path-sampling Monte-Carlo algorithm : getting insensitive to geometrical refinement
We address the question of numerically simulating the coupling of diffusion, advection and one-speed linear transport with the specific objective of handling increases of the amount, the geometrical refinement and the accuracy level of input data. The computer graphics research community has succeeded in designing Monte Carlo algorithms simulating linear radiation transport in physically realistic scenes with numerical costs that are insensitive to geometrical refinement: adding more details to the scene description does not affect the computation time. The corresponding benefits in terms of engineering flexibility are already fully integrated in the cinema industry and are gradually inherited by the video game industry. We show here that the same insensitivity to the complexity of the geometrical description can also be achieved when considering one-speed linear transport not only alone but coupled with diffusion and advection. Pure linear-transport paths are replaced with advection-diffusion/linear-transport paths constituted of subpaths, each representing one of the three physical phenomena in a recursive manner. Illustration is made with a porous medium involving up to 10000 pores, the computation time being strictly independent of the number of pores
Advection, diffusion and linear transport in a single path-sampling Monte-Carlo algorithm : getting insensitive to geometrical refinement
We address the question of numerically simulating the coupling of diffusion, advection and one-speed linear transport with the specific objective of handling increases of the amount, the geometrical refinement and the accuracy level of input data. The computer graphics research community has succeeded in designing Monte Carlo algorithms simulating linear radiation transport in physically realistic scenes with numerical costs that are insensitive to geometrical refinement: adding more details to the scene description does not affect the computation time. The corresponding benefits in terms of engineering flexibility are already fully integrated in the cinema industry and are gradually inherited by the video game industry. We show here that the same insensitivity to the complexity of the geometrical description can also be achieved when considering one-speed linear transport not only alone but coupled with diffusion and advection. Pure linear-transport paths are replaced with advection-diffusion/linear-transport paths constituted of subpaths, each representing one of the three physical phenomena in a recursive manner. Illustration is made with a porous medium involving up to 10000 pores, the computation time being strictly independent of the number of pores
SynthÚse d'images infrarouges sans calcul préalable du champ de température
International audienceNous presentons un ensemble dâalgorithmes statistiques permettant dâeffectuer le rendu dâune image thermique, en rĂ©gime instationnaire, dans une scĂšne quelconque. Simuler le signal reçu par chaque pixel de la camera consiste Ă propager les sources thermiques (conditions aux limites et initiales) par les phenomĂšnes de conduction, convection et rayonnement. La technique ne nĂ©cessite pas un calcul prĂ©alable du champ de tempĂ©rature en tout point de la scĂšne et en tout temps. Un exemple en geomĂ©trie complexe est prĂ©sentĂ©, et qualitativement comparĂ© Ă une prise de vue